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Summary
We have investigated many topics in the theory of semiconductors and

alloys including (1) Generalized Brooks' formula and the electron mobility in

SiGe alloys, (2) bond-length distribution, lattice relaxation, bond energies

and mixing enthalpies in alloys, (3) hardness and dislocation energy, (4) SiGe

alloys - band structures and core-exciton binding energy and linewidth, (5)
alloy statistics and microclustering and (6) sensitivity of deep levels to
band structure and potential. The important results are outlined below. The
details are discussed in eight publications enclosed with this report.

Generalized Brooks' Formula and the
Electron Mobility in SiGe Alloy

Although Brooks' formula has been widely used for calculating the alloy-
scattering limited electron mobility, we showed that this formula is only

valid for a direct-gap semiconductor. Besides, there are questions about the

scattering parameter and the effective mass. We generalized the formula for
indirect-gap alloys with multiple bands and applied it to SiGe alloy. Our
results, correlated well with experiments, showed that the electron mobility
drops fast with alloying. The mobility has a dip at 15% Si concentration,
corresponding to a transition from the X(A) band edge to the L edge.

Bond Lengths, Lattice Relaxation, and Mixing Enthalpies
1n Semiconductor Alloys

We treated the problem with a mode! which combines Harrison's bonding

theory with the valence force field model and an elastic continuum. While the

local strain is the main driving force for the bimodal! bond-length distribu-

tion in pseudo~binary alloys found in the EXAFS experiment, we found that the
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chemical shifts arising from different bond lengths and polarities of the
constituent bonds can have a significant contribution to the mixing enthalpies.
In fact, the sizable negative values of the chemical shifts in the cation-
substitutional alloys, e.g. GayxInj-yxAs, may be important for stabilizing the
mixture, We also deduced a simple criterion for separating miscible from
immiscible alloys.

Hardness and Dislocation Energy

We showed that, if the dislocation energy in semiconductor is dominated
by interactions among dislocations, then the hardness is an intrinsic material
property, independent of the size of the indentation and the force applied,

The fact that dislocation energy is proportional to hardness suggests that

alloy hardening is a mechanism for reducing dislocation densities.

SiGe Alloys - Band Structure and Core-Excitons

SiGe binary alloy has regenerated research interests because of its
potential application for high-mobility devices in the strained superlattice
configuration. We have applied our techniques to obtain high—quality band

structures for Si and Ge and have performed alloy calculations for SisGej_y.

The results have been checked against optical spectra and used for mobility
study mentioned earlier. Another interesting result is that the alloy band
parameters allowed us to correlate the Si 2p core-exciton binding energy with
the linewidth, The observed minimum in the linewidth near X = 0.15 can be
explained as the result of a competetion between intrinsic broadening due to
screening and extrinsic alloy broadening. The most reasonable binding energy
in pure Si was found to be 0.15 eV. This work thus helps resolve the contro-

versy about the unusuaily large binding energy for the core exciton in Si.
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Statistics and Micro-clustering in Semiconductor Alloys

One of our major efforts was to develop a statistical theory for semi-

conductor alloys which covers three aspects -energetics, statistics and phase

diagram. Because of the smallness of the mixing enthalpies, typically several
k Cal/mol, the present first-principle theory is not accurate enough for this
purpose. We found that a combination of Harrison's model and the valence
force field mode! provides a simple and adequate method for calculating the
mixing energies. We then generalized Guggenheim's quasi-chemical approxima-
tion to treat the tetrahedral clusters. Our results showed that the arrange-
ment of atoms can have a appreciable deviation from the random distribution,
The distribution is governed by the mixing energy which is the sum of the
strain energy and chemical shifts mentioned earlier. The non-random distribu-
tion will have profound effects on the band structures, mobilities, mechanical
properties and growth mechanisms, and will reflect in many measurable
properties such as phonon spectra, EXAFS, deep level spectra etc. The study

of these effects 1s one of our current activities,
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Generalized Brooks’ formula and the electron mobility in Si, Ge, _, alloys -

Srinivasan Krishnamurthy and A. Sher
SRI International, Menlo Park, California 94025

An-Ban Chen
Auburn University, Auburn, Alabama 36830

{Received 19 March 1985; accepted for publication 7 May 1985)

A formula for alloy-scattering-limited electron mobility in semiconductors is obtained for
indirect gap systems with multiple band minima. All the input parameters needed are defined
explicitly. The drift mobility of Si, Ge, _, which hasadipatx ~0.13 and a broader minimum at
x ~0.5 iscalculated by adding alloy scattering to other scattering mechanisms and correlates well

with the measured Hall mobility.

The electron and hole mobilities in semiconductors are
determined by the band structure and various scattering
mechanisms, predominately impurity and phonon scatter-
ing. For alloys, the mobulity is also affected by disorder aris-
ing from aperiodic atomic potentials and atomic positions.
Many years ago. Nordheim' and Brooks® obtained an
expression for alloy-scattering-limited electron mobilities in
metals and semiconductors, respectively. Brooks' well-
known formula reads

_ v2TeR'N, 1

Ky 3x(] — xjm*>? (AE)Z\rﬁ'
where .V, is the number of atoms per unit volume, m* is a
band-edge effective mass, x is the fractional concentration of
one of the species, and 4 E is an energy parameter character-
izing the alloy potential fluctuations. Although this formula
has been widely and. to some extent, successfully used for
direct gap materials.’~* the identification of the alloy disor-
der parameter 4£ remains uncertain. Various suggestions
have previously been made for A, e.g., and band-edge dis-
continuity® or band-gap differences.” Any of these simple
choices 1s bound to fail when one applies Eq. {1) to more
complicated indirect gap systems such as Si, Ge, _ , alloys,
where one encounters conduction-band minima transferring
between the .Y and L points of the Brillouin zone. For exam-
ple. if £ is taken to be the difference in corresponding band
edges, then one tinds that JE ~0.1 eV for the X (4 ) valley
and ~ 1.2 eV for the L valley. The values that fit the experi-
ment are about half this value for L and ~0.5¢V for .X.° The
purpose of this letter is to resolve the identity of £ for indi-
rect gap materials.

Moreover, there is a problem with the m* that enters
Eq. (11. For direct gap alloys. the band-edge effective mass at
I" naturally enters Eq. (1). For the indirect gap alloys, the
effective mass is anisotropic and hence an appropriate mass
must be chosen. Previous authors®™” have chosen m* to be
the etffective conductivity mass m*. We shall show that dif-
ferent masses enter for different cases.

The first unambiguous assignment for A £ in a direct gap
alloy was given by Hass er al.* To estimate the limiting elec-
tron mobihity in Hg, Cd, | Tebased on a tight-binding (TB)
band description. they defined 3£ tobe £ AE , where f; is
the s fraction in the density of statesand A £ s the difference
between the satomic term values of the Hg and Cd atoms. By
extending this approach to alloys with indirect gaps and

(1)

16C Appl Phys Lett 47(2), 15 July 1985
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multiple bands, we show that all the uncertainties identified
above are resolved. OQur generalized Brooks’ formula will
then be applied to Si, Ge, _, systems to explain their ob-
served mobility.”*

Because Brooks’ formula has never been derived expli-
citly in the literature, we rederive it first and then generalize
it. Consider the case of a singie band with an isotropic effec-
tive mass. The dc electronic conductivity based on the linear
response theory? is given by

o= fa{e)( ;:f)de, (2)

where the energy-dependent ol¢) in the weak alloy scattering
limit is

ole) = (e /3w (e)D (eirte). (3)

D (€} is the density of states {(DOS) per unit volume for both
spins, so D () = 2N ,p(€), with V, = .¥,/2 being the number
of unit cells per volume (for the diamond structure, half the
number of atoms .V, per unit volume; and p(€) being the DOS
per unit cell per spin. The mean square velocity v7(e) for
carriers with energy € is given by

vie) = 3otk 2LE= €K @

* ple)

The scattering lifetime for carriers with energy €, rl€), is re-
lated to the alloy broadening A (€) by ri€) = #i/24 (¢), where
the energy 4 (€) is the imaginary part of the self-energy in the
averaged alloy Green's function. For weak scattering I (e} is

A () = mx(1 — x) (AE Vple), (5)

where in a tight binding (TB) description A E is the difference
in the term values of the constituents. Then the mobility is
4, = o/ne with the electron density given by

n= 2ff(e)p(c)de. {6}

For a nondegenerate semiconductor. f'e) is the Boltzmann
distribution and fle1x e ~'* = "*". Furthermore, for a para-
bolicband e'k) = fi'k /2m*.ple) = (2m*)'*€'/*/47"# . then
all the above equations can be combined to arrive at Eq. (1).

For a real semiconductor alloy in a TB description, the
alloy scattering can be characterized by two parameters AE,
and AE, . the differences in s and p term values between two
substitutional atoms. Then an effective broadening is given

¢ 1985 American Irsttute of Phys.cs 160
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Ale)=(d;p, +d,p,)/p, {7

wherep,, p, are partial density of states (PDOS) and J, and
4, are similar to Eq. (5}, with p replaced by p, and p,, re-
spectively. For Hg, _, Cd, Te, the s disorder 1s predomin-
ent“'* and one can neglect 3E,. Defining p, =/,p (and
P» =/,p), one arrives at

A==x{l —x)}(f.AE,)p.

Thus as was pointed out by Hass et al.,” f,AE, plays the role
of AE in this special case where AE, can be neglected.

For an alloy with a single indirect gap minimum, one
has to consider both s and p contributions to the alloy broad-
ening and the masses that enter p and v°. Again. Egs. (21—{6)
can be combined to yield
Ha

_ (eF* N,y 2m)
[3x(1 — xim2m®(m$) kTN, | fLAE? + fIAE ;)]
(8)
where m? and m? are respectively the longitudinal and the
transverse mass at the band edge, and .V, is the number of
equivalent minima. e.g., 6 for Si. The conductivity mass m*
comes from averaging v° in Eq. (2) and is given by 3(2/m*
+ 1/m?*)~". Equation (8) clearly identifies the masses and
the energy parameter that enter Brooks’ formula.

Next we consider a still more complicated case where
the contribution to the mobility comes from more than one
band. For example, in Si, Ge, _, the X and L minima cross
near x = 0.15."' There are now two contributions to the net
conductivity, so o = Zo,, where i is X or L. The quantities
vie), D, e\, and V,{€) now take different values for different
bands. The structure of r, (€} requires more careful consider-
ation. The complication comes from the fact that the effec-
tive broadening J is still given by Eq. (7}, but p,, g,, and p
contain contributions from both the bands. The proper ex-
pressionsarep = X,p,.¥! andp, = X f,, N .p, wherei = X
orL,.a=sorp,and VY =6, V" = 4. The equation for 4 is

Ale) = mxil — x)Z(zme{,p, (€l AE, )/(Z o (E)N:,). (9)

The mobuility associated with the ith band is defined as
u, =0,/(n,e), then
‘_ 7efi' N, 1
"3kl —x) [mEmr2mP)' 7Y,

. P, (e!(Z-V’..p, lel)e Cerr

:ﬁdeGH:e - e/hT df. (1”
’ Z(S/Z,,.V{.p,(eLJE.,)

1, (10)

l =

J

Thus. the generalized formula no longer has the explicit
vand T dependences of the oniginal Brooks' form. However,
all the quanuties needed—the masses, the scattering param-
eters 3£, the band gaps. and the fractions f,,, —can be eval-
uated theoretically without resorting to experimentally fit-
ted parameters. To demonstrate, we shall apply Eq. (10} to
S1,Ge, . The band quantities are obtained from our CPA
calculatton.'! We found that the effective masses vary weak-

161 Appl Phys _ett, Vol. 47, No 2,15 _uly 1985

TABLE | Calculation parameters.

Parameter Si, e, |, systems

meX) 097m,,

meX) 019m,,

m*L) 1.b4m,,

m*L) 0.082m,,

E Yx) 08931 ~ 00421x + 0.1691x°

Elix) 0.7596 + 1.0860x - 0.3306x"

Soxix) 0.333 +0.05x  (0<x<0.3)
0.339 + 0.03x  (0.3ax< 1.0}

S ix) 0.632 « 0.13x

ly with the concentration, so m} and m are assumed to be
constant and assigned the values 0.97 and 0.19 for the X
minima and 1.64 and 0.082 for the L minima. respectively.
The calculated energy gaps for the X (d ) follows the func-
tional form £}’ =a + bx + ¢x” and for L is given by £’
= A + Bx + Cx°. All the parameters of our calculations are
listed in Table I.

To correlate the calculation with the measured mobili-
ties. we need to have an estimate of scattering rates 1/7, due
to impurities and phonons. A crude approximation is to as-
sume 1/, for a given vailey 1o be the same as the appropriate
constituent’s values and add to it the alloy scattering rate 1/
7. Then the average mobility and the mobility from the ith
minimum in the alloy are

p=3npu/3n,

)™ =) (12)
't is given by Eq. (10) and 4° are the measured drift mobili-
ties for Si or Ge.'* The drift mobility, calculated from Eq.
{12), is plotted as a function of alloy concentration x in Fig. 1.

For x<0.05 and x>0.20, the energy difference between
the X and L edges is large enough so there is a negligible
contribution to the mobility from the higher minima. In the
Si, Ge, _, system, the s scattering is predominent. Because

Q'3 0w ' TN IS

9 02 ue 08 os 0
FIG 1 Caleulated solud ine' electron dnft mebility and the expenmentai

Hall mobihity 1dashed hines from Refs 6 and 3 are plotted as a function of
alloy concentration.
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the L edges have a larger s content, alloy scattening reduces
the average mobility substantially for small x. Even though
the s content is almost the same for all x >0.20 at the X edge,
the mobulity still decreases to x =0.5 as shown in Fig. | be-
cause of the x{1 — x) term in Eq. {10).

An interesting feature is obtained for the compositions
0.13+.x <0.18. The average mobility attains a local mint-
mum near x = 0.14 and a smaller maximum at x =0.17.
This feature occurs because of the X to L crossover.'' For
x<0.14, the major contribution to u comes from L minima.
Near x = 0.14, the density of states increases because the .Y
and /. minima merge. So the alloy scattering increases there
and the average mobility decreases. For x0.14, the Y bands
have the lower minima. As the s content is small at the X
minima, the reduced ailoy scattering increases the average
mobility. For larger values of x, the x{I — x) term takes over
and the mobility varies as shown. The values of measured
Hail mobility in Si, Ge, _, systems are also plotted in Fig. 1.
The interesting feature near x = .14 is clearly seen. Since
the expennmental dnft mobility u, for Si, Ge, _ is not
available and the generalization of Eq. {10} to Hall mobility
My is less clear, we present the calculated u , and experimen-
tal u,, {Ref. 7.8) here. While we do not expect quantitative
agreement, because i, /4 p can range from 1t02,'*'* we do
expect them to display the same qualitative x dependence. It
is rewarding to note the similarity in the trend in Fig. 1.
Previous authors explained the dip in the mobility curve by
inciuding intervalley scattering with an arbitrary adjustable
coupling constant.” Qur calculations automatically include
that portion of intervalley scattering that results from alloy
disorder with a coupling constant set by the atomic proper-

162 Appl Phys Lett Vol 47.No 2.15 July 1985
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ties of the constituents. However, tite additon of intervaliey
scattering mediated by phonons and impurities is expected
to increase the dip near crossover.

In summary, an expression for alloy-scattering-limited
charge carrier mobilities is derived for indirect gap alloys
with multiple bands. This expression reduces to Brooks’ for-
mula for direct gap alloys. The quantities m* and 4 £ can be
calculated exactly. Alloy scattering accounts for the ob-
served mobility features in the Si, Ge, _, alloy, including
the anomaly near the L to X (4 ) crossover.

A.-B. would like to thank Professor W. E. Spicer for his
hospitality at Stanford University. This work was supported
in part by DARPA contract MDA 903-83-C-0108 and grant
AFOSR-84-0282.
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FIG. 1. Variation of the band gap (solid line) and the Si
2p core-exciton level with xin Si,Ge, -, alloys. The energy
is measured from the top of the valence band. The dashed
curves a. b, and ¢ represent exciton levels calcuiated with
EP=0.1,0.15. and 0.3 eV, respectively.

by replacing the short-range Coulomb potential with a
spherical square well of variable depth and a screened
Coulomb tail. Strinau’s results can be used to estimate
A, corresponding to the calculated £,. A, decreases
rapidly with £,, then saturates for larger £,.

The contribution to the natural linewidth from the
alloy broadening is calculated by a consideration of the
electron part of the exciton wave function, &,. The i
is expanded in a linear combination of the s part of the
conduction-band wave functions ¢

W (k) =3 Cpb k). (7)

ns

We found that alloy scattering is only moderate and s
scattering is dominant. thus. the alloy broadening
A UE) is well approximated by

A(E) =x(1-3)8}ImF,(E), (8)

where &, is the difference between £ and ESC.
Hence. the alloy-broadening contribution to A is relat-
ed to the alloy broadening of the band states.
A,k E).

A= -{— 3, 0[A (B ] ()
A"

= 3 3 LA, E)
: k »n

= [p,(E)3 (BVE
=x(l —_\')ﬁfﬂfp,:(f)dﬁ (9)

The integral in Eq. (9) s evaluated numerically.
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FIG 2. Varnwuon of A (sohd iines) and A, (dashed lines)
with x for three £, values.

The calculated A. which is the sum of X, and A . is
plotted against v in Fig. 2 for three values of £, In all
three panels. the dashed curve represents A; and the
solid line represents A. It is seen from Fig. | that the
exciton level follows the X edge of the conduction
band. Hence the binding energy E,. relative to the
conduction band edge. remairs almost consiant (for a
given £)) until the minimum switches from the Y
edge to the L edge. Because of the change in the stope
of E,. E, decreases rapidly when L becomes the
minimum. Correspondingly. A, varies slowly until the
X to L crossover and then increases rapidly. This
feature is clearly seen in Fig. 2.

For £=0135, the 3, and A, are comparable near
x =030, and A, dominates tor all small x and laree .
These two competing mechanisms give a relatine
minimum near v = 0.15, a broader maxtmum near
x = 0.50. and 4 smailer minimum for pure sihicon. As
EQ is decreased. the relative minimum is shifted to
larger v, eg.. the minimum shifts to v=0.20 for
£y =010 ¢V, For £=015 eV, the posiion of the
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Dislocation energies and hardness of semiconductors
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The dislocation energies and hardness of semiconductors are caiculated by an extension of

Harrison’s method. It is demonstrated in agrezment with experiment that dislocation energies per
unit length are proportional tod ~3-d ~° whered is thebond length and hardness is proportional
tod ~3-d ~''. The hardness is related to the interaction energies among dislocations. It is argued

that dislocation densities of semiconductors will be reduced if they are alloyed with a second
constituent that has a shorter bond length. Experimental evidence supporting this strategy is

noted.

Dislocations in semiconductors are detrimental to de-
vice function; they serve as channels for impurity migration
and trapping, which cause nonuniform doping and degrades
p-n junctions.' They also decrease the material’s resistance
to piastic deformation. The aim of this letter is to provide
insights into the underlying physical mechanisms control-
ling dislocations and semiconductor hardness, and then to
suggest strategies for decreasing dislocation densities. It is
well established that the hardness of tetrahedrally coordi-
nated semiconductor materials—groups 1V, II1-V, and 1I-
V1 compounds—exhibits a sharp variation with their near-
neighbor distance d. approximately proportional tod ~” for
one group of seven compounds.” Thus, semiconductors with
small lattice constants tend to be harder materials. These
same materials have larger stiffness coefficients® and have
fewer dislocations in as-grown crystals.*®

The shear coefficients (combinations of C,, and
C,, — C,- in the Schoenflies notation)’ depend on crystal
orientation and {in Harrison's notation®) are proportional to
Visd* Vi + V)2 where V.« d ~?is the covalentand ¥,
is the ionic energy. The metallic interaction modifies the
functional dependence of the shear coefficient on ¥, and V,,
but introduces no explicit dependence on the hopping inte-
grals, denoted ¥, by Harrison.>® In a pure covalent material,
the bond energy is proportional to ¥, lor d ~?), and the bond
volume is « d *; hence, in this case, the shear coefficient var-
iesasd ~*. Inthelimit, ¥,>V;, C,, — C,;«d ~'"". For most
polar semiconductors, d ~° is a good approximation.

Hardness is determined by applying a known force F to
a probe of a prescribed shape driving it into the surface of the
sample.” The area 4 of the resulting indentation is measured,
and the hardness is the force per unit indented area. Many
dislocaticns must be formed to allow the probe to indent the
semiconductor. If the indenter is a rectangular pyramid,
thenthehe dnessis H = F /A = Fh /Ah = €,/Ah, whereér
is the work required to cause the indenter to penetrate to a
depth h. A side view of the indentation in a cut through its
center is illustrated schematically in Fig. 1. The top of the
indentation has side length W; thus, 4 = W 2. The Burger’s
vector has magnitude b, proportional to the bond length d.
The number of dislocations N, required to accommodate an
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indentation to depth A is N, = h /b = |W cos ¢ /b, where &
is the angle between the normal to the tip of the indenter and
aside. Figure 1 also shows a model of one possible configura-
tion of the dislocations. The edges of the extra atom planes
that are driven from the indented volume into the bulk of the
semiconductor are shown as lines terminated by dots. The
dotted ends of these lines are the positions of the disloca-
tions, which are perpendicular to the plane of the figure. The
planes driven to the sides each have a finite extent and a
trapezoidal shape. The planes driven down under the indent-
er have a square shape.

Much of the work done on the indenter goes into the
energy to form the indicated dislocation configuraticn, al-
though some certainly goes into heat. There are two major
contributions to this formation energy. The first is the enegy
needed to generate each dislocation as an isolated entity, and
the second is the interaction energy among these disloca-
tions. Because the interaction term dominates A, approxi-
mations made to simplify the first term are relatively unim-
portant. The extra planes driven to the sides of the
indentation have a finite extent; accordingly (in this idealized
picture), there are both edge dislocations at their base and
screw dislocations associated with their termination. The
square planes driven below the indentation have edge dislo-
cations around the sides and screw dislocations at the
corners to make the turns. Moreover, there are interactions

e
Tt by

F1G. 1. Schematic representation of an idealized minimum-energy disloca-
tion configuration produced by a square cross-section indenter in a hard-
ness measurement. H'is the side length and A 1s the depth of the indentation.
In this ideal case, half the material from the indented region is displaced
along the glide planes (indicated by the dashed arrows) to the sides and half
is displaced below the indenter.

© 1985 American Institute of Physics 54



among the dislocations, which can produce a minimum-en-
ergy configuration. For the arrangement depicted in Fig. |,
it always costs energy to position a second dislocation on a
parallel glide plane to one already present. However, the
magnitude of this extra energy can be minimized and, for
proper configurations of the dislocations, there are attractive
forces along the glide planes that will tend to position the
dislocations into the minimum-energy configuration. The
minimum configuration arises when half of the atoms from
the indented volume go respectively to the side and below the
indenter. Then, in both regions, the maximum angle made
between successive close-spaced dislocation lines and their
glide planesis & = 7/2 — & /2, asshown in the figure. This is
the minimum realistic energy configuration. If the disloca-
tions are separated more than shown in Fig. 1, then there is
more volume of strained material and the interaction energy
would be larger still.

An approximate expression for the energy required to
indent the material is’

€r=24 iE.L. +% S E,[min(L,.L,)] (h

=1 =1
In the first term, using an isotropic medium approximation
and neglecting core terms, the energy per unit length to form
an edge dislocation is’
= _Gb_'__xnﬁ' (2)
4ami—v) r,

:

the shear coefficient is G, the Burger's vector 6 = d /3 for an
indentation along a ( 100) axis, the range of the elastic defor-
mation of a dislocation R is taken equal to W (for want of a
better approximation), r,~d is the dislocation core radius,
the Potsson ratio is v~0.2 for most semiconductors, and L,
is the length of the ith dislocation. In the second term, £, 1s
the interaction energy per unit length between dislocations /
and j. Assuming they have parallel glide planes and their
Burger’s vectors have the same sign, E,, is given by’

Gb* R 1
E, = ———|In| — 2 ,
= _V,[ n("l) + cos ¢,,] (3)

where r, is the separation, and @, is the angle that a line
perpendicular to and joining the dislocations makes with the
glide plane, as shown in Fig. 1. Because the various disioca-
tions in a region have different lengths, the net interaction
energy is approximated by multiplving the energy per unit
length by the length of the shorter one. The upper limits on
the sums .V are the number of dislocations in one region (side
or bottom) associated with one edge. For the minimum-ener-
gy configuration, N = .V, /2. The four that multiplies the
bracket accounts for the four sides, and the two for the two
regions for each side.

We now encounter our first surprise. As we can see
from Eq.(2tand (3), £, and E, have comparable magnitudes.
Because there are approximately .V ? terms in the interaction
energy sum, only ¥ terms in the formation energy sum, and
WNVisalarge number (V> 1), the interaction energy completely
dominates the hardness. In fact, .V is typically of the order
10°. Hence, terms owing to screw dislocations, core energies,
heat dissipation as the dislocations propagate to their places,
and other effects associated with the first term are unimpor-
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tant. However, care must be taken with the interaction
terms: Eq. (1) neglects a number of secondary interactions,
some positive and others negative; these will be added later.
The principal neglected terms are the interactions between
the dislocations in the different regions on each side (posi-
tive, and the interactions between adjacent side and bottom
regions (positive}, and the interaction between the opposite
sides in the bottom regions inegative). Comparison of the
results with experiment will indicate how important these
neglected terms are likely tobe. The length L, is W (N — /N
forifrom 1 to V. Thisis the largest length of the side-inserted
planes and its chowe partiaily accounts for interacitons
between the otherwise neglected screw dislocations. The dis-
tance s, =r, — r, is given by 242b i — j| for i and j ranging
from | to V for the minimum-energy configuration and a
tetrahedrally bonded semiconductor. Finally, in the indicat-
ed configuration, ¢, = ¢ = 7/2 — ¢ /2. Inserting these ex-
pressions into Eq. (1) and retaining only terms of order .V ?
yields

H.. = Geotd [ - ln( o 0) + % + sin’%]. (4)

T eml —v) 2

One can also get a number for the hardness of a disloca-
tion in which all the material is pushed along the same glide
plane. e.g.. to the side. to the bottom, or normal to the face of
the indenter 1a possibility not depicted in Fig. 1). In this case,
the factor of 2 in front of Eq. 11 is removed, .V =.V, and
¢ = 7/2 — ¢. Then a higher nonequilibrium hardness in the
contexi of this mode! {denoted H,), is obtained.

H = Gcot [ —ln(coiﬂ) 3 4 in? :?]. {5)
3ml —w 3

v2
The proper answer for most materials, and depending on
crystal orientation, probably lies somewhere between A,
and H,. For an indenter with J = /4, we have H_,,
=0.0969G /{1 —v) and H,/H,, =2.39. Harrison® has
shown that one contribution to the shear coefficient (actually
C,, —C,,) is G=2.38 #mal/md?> where m is the free-
electron mass, a, is the covalence, @, = V./(V1 + Vi}''3,
and d is the bond length. We will approximate G by this
expression. Using this G and v = 0.2, and changing the di-
mensions to those in terms of which experimental hardness
numbers are customarily quoted gives H,,, = 2.38x10*
(a;/d ") kgm/mm*, where d is in angstroms. Calculated val-
ues of A, and H, are plotted against experimental results
in Fig. 2 for a number of semiconductors.

Figure 2 has the theoretical H,,, and H, values con-
nected by arrows from H,,,,, to H, for each compound, plot-
ted as a function of the corresponding experimental val-
ues.”” If the theory were perfect and the exp :rimental values
were accurate, the points would fall on the indicated unity
slope line. Several conclusions can be drawn. Firstly, the
order of magnitude of the predicted and measured values are
the same, a result obtained with no adjustable parameters in
the theory. Secondly, the trends from one compound to an-
other are properly given by the theory. Although the H,,
values are generally too small, they fit the soft materials bet-
ter, and the /, values fit the harder matenals better. Thirdly,
from Eqs. (1) and (3), H is given in a rough but revealing
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FIG. 2. Theoretical vs expennmental hardness of several semiconductors in
Refs. 2 and 9. The two theoretical values for each semiconductor are con-
nected by an arrow from H_ to f,. Perfect agreement would correspond
ic puints being on the unity-slope soiid ine.

approximation by 4.¥ ZE,/[—. /Ah, where the averge disloca-
tion length L = W /2 and E, is the average disiocation pair
interaction energy per unit length. Notice that .V (or W)can-
cels from this expression: thus, / is independent of W (or F)
and therefore, H is truly a measure of the properties of the
material. This result would not be found if the dislocation
energies | « .V )were to dominate A rather than the pair inter-
action energy { «.Y~). Finally, the Berger's vector cancels
from the leading term and appears only in the argument of
the logarithm in Eq. (3). Thus, the answers are also insensi-
tive to 1ts choice.

Dislocations are often found in materials as they are
grown. Their density is determined by the thermal and me-
chanical stresses to which they are subjected in the growth
process. A dislocation constitutes a metastable excitation
relative to the perfect crystal ground state. At the elevated
growth temperatures and temperature gradient behind the
growth front, the number of dislocations present is con-
trolled by the relative rate at which vacancies anneal or con-
dense intodislocations.'* The dislocation formation rate will
be siower in a material grown at the same temperature if E, is
higher. If an alloy is formed from a material of interest and a
second constituent with a shorter bond length, one expects
theaverage bond energy (and thus both the melt temperature
and vacancy formation energy) to increase proportional to a
low inverse power of the average bond length.® Hence, the
equilibrium vacancy density just below the melting point
tends to be the same in lowest order for all materials, inde-
pendent of the bond lengths of the constituents. However,
the shear coeflicient and dislocation energy per unit length
will increase with much higher inverse powers of the bond
length. Consequently, dislocition densities should be re-
duced in such alloys relative to those found in the longer
bond length pure constituent. This expectation is confirmed

3 # 20\, Phys. Lett,, Vol. 46, No. 1, 1 January 1985

in the recent work reported on Zn, _, Cd, Te bulk material.*
The best CdTe that has ever been grown has dislocation den-
sities in excess of 5 X 10° cm 2. The addition of only 4% Zn
reduced the dislocation count to less than 5 X 10 cm =2, The
ZnTe bond length is 2.643 A, while the CdTe bond length is
2.805 A, a 6% difference. This 6% difference in bond length
translates into a 2% difference in the dislocation energy per
unit length for 1 — x = 0.04. Dislocation energies per unit
length are typically 10 eV per lattice spacing; accordingly, a
2% increase can be expected to slow their formation rate
considerably.

The argument just presented naturally leads to a strate-
gy for decreasing dislocations in other semiconductors. If an
alloy is made of the material of interest with another com-
pound with a shorter bond length, then the dislocation den-
sity should be reduced. For example, this suggests that the
addition of a small amount of GaP (d = 2.359 A) may signifi-
cantly reduce the dislocation density of bulk grown GaAs
(d=2.448 A). It has been demonstrated that the addition of
approximately 1% GaN (d = 1.946 A)*® or of a 10'* cm~*
BAs (d = 2.069 A) concentration'" to GaAs can yield a large
volume of dislocation-free material. An InAs additive with
its longer bond length (d = 2.623 A serves the same function
indirectly, by causing GaAs bonds in its neighborhood to be
compressed. This indirect mechanism should be less effec-
tive than substituting short bond length additives.

We have demonstrated that the dislocation energies
and hardness of tetrahedrally bonded semiconductors are
rapid functions of the reciprocal of the bond length. This
rapid d dependence of dislocation energies provides a ratio-
nale for the dramatic decrease of the dislocation density in
bulk grown Zn,, ,, Cd, o, Te material relative to that found in
CdTe, and suggest means for accomplishing the same ends in
other materials.
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Sensitivity of defect energy levels to host band structures and impuriiy potentials in CdTe
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The sensitivity of defect energy levels in semiconductors to the host band structures and impurity
potentials has been studied for approximately 30 impurities in CdTe using four different band-
structure models. The discrepancies in the defect levels between two different sets of band struc-
tures and impurity potentials are found to range from less than 0.1 ¢V to the whole band gap (1.6
eV). The band-structure effects are analyzed here in terms of detailed partial densities of states.
Examples of contradictory predictions from different band structures are illustrated, and ways to

improve the theory are suggested.

I. INTRODUCTION

In several of our recent papers,'~’ we have applied a
method to calculate the band structure of semiconductors
that is both efficient and accurate. Because the procedure
involves casting the basis functions into orthonormal local
orbitals® (OLO), our method has the advantages common
to empirical tight-binding (ETB) calculations.®~'% except
that the Hamiltonian matrix elements to all ranges are re-
tained. The inclusion of these higher coefficients makes it
possible to produce excellent band structures including
conduction bands and effective masses. The method aiso
yields wave functions for optical property calculations.’
Moreover, its OLO description also permits its extension,
through the coherent-potential approximation, to al-
loys.>—3

The recent attention focused on defects in semiconduc-
tors motivated us to apply our method to this problem.
The theories of defects have ranged from very sophisticat-
ed self-consistent density-functional theory''~!* (SCDF)
to simple ETB calculations. It is generally recognized
that SCDF is as accurate in defects for the ground-state
properties as it is for pure semiconductors, but less certain
in assigning excited energy levels. ETB, because it can
produce results for many systems in one study, claims to
predict the trends of deep levels'® even if the accuracy for
a given impurity may be poor. However, this contention
remains to be verified.

To assess this concern, we ask the following question:
“How sensitive are defect levels to host band structures
and impurity potentials?” To this end, we have adopted
the simple yet nontrivial defect model, that of site-
diagonal substitutional defects often used in E1B studies.
CdTe was selected in this study because its band structure
has been examined in great detail by us, and there are
three published band-structure models® =" t: at we could
easily generate for comparison. There is also a consider-
able [t:od; of experimental data on deep states in this sys-
tem.H-!

II. CALCULATIONAL PROCEDURE

In the simple site-diagonal substitutional defect model,
the impurity energy levels E are determined by the equa-
tion

1—v,8,(E)=0, 8]

where a designates the symmetry of a local state, e.g., [,
I';, and Ty on an atomic site in the zinc-blende structure,
and g, is the real part of the diagona! matrix element of
the host-crystal Green function. g, can be calculated
from the partial density of states (PDOS) by

8alEV= [ pole)/(E —€)de . (2)
The PDOS is given by
plE)=" |af(k) | Ble—€,x(k)), 3)
nk

where €,(k) are band energies and a/(k) are the probabili-
ty amplitudes of the band state in the Bloch basis con-
structed from the OLO labeled by a. The Brillouin-zone
integration in Eq. (3) is calculated using an accurate ray
scheme.'®

Because a principal concern of this paper is the sensi-
tivity of impurity levels to the host band structures, we
should emphasize the difference between our method and
ETB. Our method consists of four steps.

(1) We start with four Gaussian orbitals per atom and
empirical pseudopotentials,'” and compute the Hamiltoni-
an matrix H{k) and overlap matrix S(k) as was done by
Kane and Chadi.?!

(2) The Gaussian orbitals are transformed into OLO.®
so H (k) is transformed into Hy(k) and § into the identity
matrix. The band structures calculated from Hy(k) are
accurate to 5% as compared to more sophisticated
methods using the same potential.'

(3) A spin-orbit Hamiltonian in the OLO basis® is in-
corporated to deal with this interaction.

(4) To compensate for the effects of truncated basis and

6490 © 1985 The American Physical Society
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nonlocal potentials, a perturbation Hamiltonian H, is
added. A, has the same form as a truncated ETB Hamil-
tonian. The parameters in H, are adjusted to fine tune
the important band energies and effective masses.' =*

Although both ETB and our methods are empirical,
there are two major differences.

(1) While most ETB retains the H matrix elements only
to the first- or second-neighbor shell, ours extends to all
ranges, so that the high Fourier components needed to
produce the sharp band curvatures are properly given,

(2) Our method can directly generate wave functions for
calculation of other properties.

Thus, while our method yields more accurate band struc-
“tures, it retains much of the advantage of ETB. namely
the computational speed and a simple direct-space
description of the Hamiltonian.

III. BAND STRUCTURES AND PARTIAL
DENSITIES OF STATES

Figure 1 depicts the four band structures to be con-
sidered for CdTe. Our result is in panel (a); panels (b
(Ref. 8) and (c) (Ref. 9) are two ETB band structures with
the Hamiitonian matrix elements truncated at second
neighbors. tBecause different parameters were selected,
these two band structures are not identical.) Panel (d)
{(Ref. 10) results from the use of five basis orbitals per
atomn; the extra one is an excited s state. All these band
structures are adjusted to have the proper fundamental
band gap of 1.6 eV. The principal differences one sees on
first inspection are in the band curvatures, especially the
conduction bands. The effective mass at the bottom of
the conduction band in panel (a) is 0.1 times the free-
electron mass, in agreement with experiment,'” while in
other panels it is more than twice as large.

Figure 2 shows the densities of states (DOS) for each of
the band structures in Fig. 1. While the valence bands at
least exhibit general common features, the conduction
bands are almost unrecognizable as representing the same
compound. In panels (¢} and (d), for example, there is a
second band gap above the fundamental gap. Also note
that there are two extra narrow peaks associated with the
two extra excited s orbitals (one for Cd and the other for
Te) included in the calculation.

To analyze the band effects on defect levels [see Egs. (1)
and (2'], the DOS is further decomposed into partial den-
sities of states for Tyls), T-(p'/"), and [y(p?/*) states on
the Cd and Te sites, as shown in Figs. 3—6. The I'q
PDOS are not shown because they are nearly the same as
I'; with only a slight upward energy shift. These PDOS
show how the “atomic™ levels evolve into band states.
These curves contain useful information about many
properties, e.g., the relation between the crystal bonding
and atomic energies. and how potential disorder in alloys
affects different parts of the bands,”~% in addition to de-
fect levels studied here.

The I',iCd) PDOS shown in Fig. 3 split between the
conduction and valence bands. It is generally assumed
that the cation s states in I1I-V and II-VI compounds
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FIG. 1. Four band structures of CdTe used for comparative
studies: (a) present work, (b) Ref. 8, (c1 Ref. 9, and -d) Ref. 10.
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structures in Fig. 1.




e o e 2t sne o g A feb i AR B A S AR /R T A e RSt R N '—'-".
o‘. '
A.-B. CHEN AND A. SHER 3
a2
15 ‘.' T T Y T Y .\.:
."._a
10} -4 “:.'
.<_.
[ X- 3 .
:_i
3 00 = 00 i - = 4 o
> > .
3 Q6 (b} T T T g 15 ) T T T T T 3:..
3 ‘-:.
2 3 10f 4
3 3 8 \,
o 03} o N
z Z 05} 4 _
= 2
x T -’
d g0l N , . ' £ 00 :
£ 060 T ; — " @ 1.5[() T T J T T L
- * -
< | o
= = 1.0+ h :
e - w .
5 03r A\ o [ %
> > 05 7 =
: A\ :
wy n .. -
g 0.0 x : Z oo . :
06 ) T T o 15 ) T T .
10 . o
03+ h '
05 .
0.0 A\ L . . 00 L pr— L ——a .:.,'
-12 -8 -4 ] 4 8 12 -12 8 -4 0 4 8 12 n
ENERGY (eV} ENERGY (eV) -
. . (S
FIG. 3. The Cd I, partial densities of states. FIG. 5. The Te I', partial densities of states.
06 1o} Y T T 04 @ T ; T T T
03+ ~ 0.2+ d\ E K
S o0l _a i ; - 00 i n /k—\ "
2 067 ‘ ‘ T 3 040 " T ‘ ' ' :
2 3 ;
3 3 0s .
- 0.3+ . 2 0.
z > oy
=t E .
T .
& 00 . 4:\__JJ\L L g 0.0 . . L
m 06 (c, v T T T 8 04 (\‘.) T T T T
P ~
X <
- -
© %
S 03F 4 & 02 1
£ z :
1523 -_ .
%]
S ool A/\ 2 00 . L .
c 0.5 {d} v T T T =) 04 (a) T T T T T
j f\/\/L | j J\[\M |
0.0 i r\ A 00 X L -
-12 -8 -4 0 4 8 12 -12 -8 4 (V] 4 8 12 N
ENERGY (eV) ENERGY (eV) ;_-:.
FIG. 4. The Cd - partial densities of states. FIG. 6. The Te I~ partial densities of states. ‘r :




AR

3 SENSITIVITY OF DEFECT ENERGY LEVELS TO HOST . .. 6493

evolve into the conduction bands, while the anion p states
make up most of the major valence bands just below the
gap. Thus it is perhaps a surprise to see a prominent peak
derived from the cation s states at the bottom of the ma-
jor valence-band structure. However, this is a general
feature for all sp’-based compound semiconductors.
These are the states responsible for the first observed
breakdown of the virtual-crystal approximation for a
semiconductor alloy: Hg,_,Cd,Te (which is caused by
the large s-energy shift between the Cd and Hg sites).*>2

A more detailed examination draws attention to some
important differences among the four panels in Fig. 3:
the valence-band peak in panel (c) is about 2 eV higher
than the rest, and it is also high compared to experi-
ment.”> Our conduction-band PDOS in panel (a) is
broader than the others. The ratio of the integrated
PDOS in the conduction bands to that in the valence
bands in our model is larger than those in other panels.
Also our PDOS just below the valence-band edge is obvi-
ously smaller than that found in other models.

Figure 4 shows that the Cd p states are concentrated in
the conduction-band states. This is particularly true in
panel (a), where their contribution to the valence-band
states shrinks almost to nothing. In other panels, there
are still sizable {~20%) valence-band states. In contrast,

all four panels in Fig. 5 show that the Te s states are con-
fined to the deep valence-band states, as generally recog-
nized. Finally, Fig. 6 shows that the Te p states dominate
the upper valence-band states. Panel (a) has much less
conduction-band content than the other three panels. As
we will see, these differences can result in quantitatively
or even qualitatively different predictions about the deep
levels.

IV. IMPURITY-LEVEL DETERMINATION

A convenient way to study the impurity energy levels
using Eq. (1) is to rewrite it as v, =1/g,( E) and piot E as
a function of v. Once this E-v curve is deduced for each
a, the deep levels E for a given impurity can be read off
the curve by drawing a vertical line at the appropnate
value of v, for the impurity. We set the zero of energy at
the top of the valence bands. Because the gap is 1.6 eV,
we will focus on levels in the energy range from —0.5 to
2.0eV.

Calculations have been performed for all neutral impur-
ities listed in Table I. Because we do not believe that
there exists a uniformly accepted table for v we have
adopted a table that we used for structural studies.”*
Table I lists the term values, which we obtained from to-

TABLE . s- and p-state correlated term values in units of —eV. The top entry is the s-state, the
second the p,;-State, and the third the p;,-state energy. (All energies are negative.)

I 1 10 v Vi Vil
Li Be B N 0 F
5.390 9.320 14.003 19.814 26.081 28.551 36.229
5.412 8.300 11.260 14.540 13.613 17.484
5412 8.300 11.260 14.540 13.610 17.420
Na Zn Al i P S Cl
5.140 9.390 11.780 15.027 19.620 21.163 25.812
4237 5.980 8.150 10.610 10.449 13.136
4011 5.980 8.150 10.550 10.360 13.010
K Cd Ga As Se Br
4.340 8.990 13.230 16.396 20.015 21.412 24.949
4313 6.000 7.830 10.146 10.188 12.353
4.097 5.850 7.694 9.8310 9.750 11.840
Rb Hg In Sb Te I
4.180 10.430 12.032 14.525 17.560 19.120 21.631
4.998 5.780 7.340 9.391 9.951 11.470
4,031 5.453 6.879 8.640 9.010 10.450
Cs
3.890 15.250
7.410
5.979
Cu
7.720
Ag
7.570
3.647
3.487
Au
9.220
4.349
31,683
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FI1G. 7. The E-v curves for the I states on a Cd site.

tal energy differences between atomic configurations cal-
culated using the norm-conserved pseudopotentials®® and
self-consistent charge-density-functional theory, with the
first ionization energies adjusted to be the experimental
values.® These term values are found to yield consistent-
ly better structural properties™ in Harrison's theory 8
than those based on Mann's values®® adopted by Har-
nson.”® The impurity-potential parameters wiil then be
taken as the difference of the term values between the im-
purity atom and Cd {or Te). To study the sensitivity of
E, to v,, we shift v, by +0.5 eV and compute the corre-
sponding changes in the energy levels.

Figures 7-10 display the E-uv curves for several a.
Each figure has four curves, corresponding to the four
panels of PDOS in each of Figs. 3—6. The functional
behavior of these curves can be understood qualitatively
using Eq. (2) and Figs. 3—6. If E lies in the gap, the con-
tribution from conduction bands is negative, but positive
from the valence bands. The closer the PDOS 1o the E in
question, the larger will be its influence. Applying this
argument to the I((Cd) representation, we see that the
curves in Fig. 7 are negative in the gap region because the
PDOS in Fig. 3 near the bottom of the conduction bands
are much larger than those near the valence-band top.
Thus, on the Cd site, only impurities with an s energy

20 T T T T T
1.5 b
10 p
>
2
“os >
00 /———:_::ﬁ
. — -
f T
05 ot /1/ i

-25 -20 -15 -10 ‘-5 0 -] 10 15 20 25
V (eV)

FIG. 8. The E-v curves for the I'; states on a Cd site.

FIG. 9. The E-v curves for the [, states on a Te site.

below the Cd s level (—8.99 eV) will produce a 'y level in
the gap. However, we note that in Fig. 7, g,(E)=0 for
models (b) and (c) just below the valence-band edge be-
cause of cancellation between the conduction- and
valence-band contributions. At this E value, the E-v
curve switches from v=—wo to v=co (not shown); an
ideal vacancy level (corresponding to v, = ) is located at
this E. A similar consideration, but with the conduction
and valence bands interchanged, leads to an understanding
of the curves in Fig. 10. Using the same principle, we can
easily understand why all curves in Fig. 9 for the I'4(Te)
representation are positive, but the reasons for the large
displacements between these curves are not easy to
deduce. In Fig. 8, the curve labeled g is distinctively dif-
ferent from other curves, because the PDOS in panel (a) in
Fig. 4 is completely dominated by the conduction band;
however, for the other panels the PDOS just below the
valence-band edge are as large as those just above the
conduction-band edge. This produces a very sharp nega-
tive E-v curve for (a), but split behavior for (b), (c), and
(d).

These E-v curves provide a clear picture of how dif-
ferent host band structures may affect the deep levels.
Numerical values for the impurity levels can be obtained
from these figures by drawing vertical lines at the ap-
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FIG. 10. The E-v curves for the Iy states on a Te site.
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propriate impurity potentials (i.e., differences between the
term values listed in Table I), as has been shown for
several representative impurities. To provide a more
quantitative comparison, Table II lists some calculated
impurity levels E, and the corresponding changes AE,
due to the 1-eV change in v,.

V. RESULTS AND CONCLUSION

To summarize we recall that band models (b) and (c)
are the same second-neighbor ETB with two different sets
of parameters, and model (d) is a first-neighbor ETB with
one extra s orbital per atom. Qur model [model (a/] has
the form of ETB but is derived in a very different manner
and includes all the long-range interactions. Therefore,
we expect that the results from models (b) and (c) will be
close. model !d) will have larger discrepancies from (b)
and (¢} than that between (b) and (c), and model {a) will
differ even more. This is evident from Figs. 7—10 and
Table II. We found the energies for the [(Cd), I'5(Te),
and I4{Te) states produced by models (b} and (c) agree
within 0.1 eV. For the other states, i.e., [ (Te), I';(Cd),
and I4(Cd), the energies from (b) and (c) are qualitatively
similar, but the difference can be as large as 0.4 eV. The
largest discrepancy between models (d) and (b [or (¢)] is
more than 0.5 eV, and that between (a) and other models
is more than 1 eV. The largest difference comes from the

p levels on a Cd site. For example, the filled p level of C
on a Cd site in model (a) is a resonance state just below
the valence-band edge but is a donor state in the other
models. Similarly, model (a} puts the neutral Te anusite
defect p levels at about + and + of the gap [E(I";)=0.48
eV and E([3)=0.95 eV], whiie other models assign them
as resonance states inside the conduction bands. We also
note that the discrepancies between different models are
not uniform, but vary with v,. Consider I',(Cd) for ex-
ample. All four models yield the same ordering and about
the same energies for the group-I1I impurities Al, In, and
Ga. However, as v becomes more negative, the splitting
between the curves increases, so the discrepancies become
larger [~1 eV difference between models ta) and (d) for I
impunty]. Similarly, for the [ ;Te) states, all four models
put the Sn impurity energies close to the valence-band
edge, but the agreement deteriorates as v, increases.
Regarding the sensitivity of energy levels to impurity
potentials, Table II shows that a 1-eV shift in v, produces
a change in E, ranging from less than 0.1 to 0.65 eV.
Very little is known about the size or trends in errors in-
troduced in v, from the use of atomic term values. How-
ever, we know that the discrepancy of v, between two dif-
ferent tables of atomic term values can be larger than 2
eV. This discrepancy translates into an uncertainty of less
than 0.1 to more than | €V in the impurity energy levels,

TABLE II. Defect energy levels E and changes AE due to a 1-eV change in the impurity-potential parameter. All energies are in

units of eV. ¥, stands for ideal vacancy.

Model {(a) Model (b) Model (c) Model (d)
Defect E AE E AE E AE E AE
I, on Cd site
Ga 1.29 0.39 1.42 0.24 1.33 0.23 1.57 0.18
C —-0.21 0.09 0.38 0.09 0.36 0.13 0.74 0.08
Si 0.67 0.20 1.02 0.10 0.93 0.19 1.27 0.15
P -0.19 0.11 0.39 0.09 0.38 0.08 0.75 0.08
(o] < =05 —0.02 0.02 0.04 0.01 0.32 0.02
Te -0.13 0.13 0.44 0.10 0.42 0.08 0.79 0.09
Cl <-05 0.06 0.03 0.10 0.02 0.41 0.04
Vo <-0.5 < =05 —0.30 —-0.20
I'; on Cd site
C -0.02 0.37 1.32 0.22 1.59 0.20 1.39 0.19
Si 1.57 0.65 >2.0 >2.0 20
P 0.16 0.38 1.48 0.26 1.73 0.23 1.52 0.21
(o] < -0.5 0.89 0.14 1.22 0.13 1.03 0.12
Te 0.48 0.55 1.60 0.29 1.88 0.23 1.66 0.24
Cl <-05 0.9 0.17 1.29 0.14 1.09 0.14
V, < =05 €.00 0.21 0.06
[, on Te site
Li 0.14 0.29 1.23 0.22 1.15 0.15 0.76 0.2
Cu < =05 0.54 0.42 0.12 0.52 0.03 0.32
: I, on Te site
Ag 1.89 0.32 1.26 0.22 1.21 0.23 0.99 0.20
Cd 1.66 0.34 1.11 0.26 1.05 0.26 0.85 0.22
Ga 0.93 0.49 0.61 0.13 0.55 0.32 0.40 0.30
Si -0.07 0.40 -0.11 0.316 -0.13 0.18 -0.38 0.72
Sn 0.23 0.47 0.1

0.31

0.13 0.23 0.02 0.28
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which is comparable to that due to different host band
structures.

Putting this large uncertainty in the deep levels against
a band gap of 1.6 eV, we are left with great doubts about
the predictability of this oversimplified theory. Unfor-
tunately, the experimental means available for identifying
microdefects in semiconductors are still very limited, and
the ab :nutio band theory is still not capable of accurately
predicting the energy leveis. Thus, there is a great temp-
tation to use simple theories like the one carmed out here
to help with the identifications. To illustrate this point,
consider the following examples: Table 11 shows that Li
on a Te site has an s level of 0.14 ¢V in model (a), so one
may be tempted to relate it to the acceptor state identified
expenmentally.’* However, this is not the hydrogenic ac-
ceptor state on a Cd site, as one might anticipate. One
might also want 10 assign the + and ¢ gap states for the
Te anusite p levels on the Cd site found from model (al as
those seen in experiments.'*1® Because of the large uncer-
tainty in the calculation, these results should be regarded
as suspicious surprises rather than theoretical confirma-
tions.

The results presented here should not discourage con-
tinued research on the ETB approach, but improvement is
clearly needed. Work ranging from universal®<"3 to
specific™® 13 structural studies to our band calculations
and a'loy studies’ =7 indicates that the ETB type of theory
is practical for both bonding properties and electronic
structures. The reason that ETB works well for some
properties, e.g.. photoemission spectra and bonding prop-
erties, but not for impurity levels, is that the former de-
pend only on the gross total density of states, while the
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latter have been shown to be sensitive to the details of thg
parnial densities of states.

To establish the credibility of ETB in defect studies,
one needs to look at the problem more seriously. The
most difficult and vet important task is to develop a better
way for determining the Hamuiltontan matrix elements.
Haas et al.® and Harrison?”*% have suggested using the
atomic term values as the diagonal matrix elements. QOur
work!~* has suggested using a universal long-range in-
teraction to improve the accuracy of the conduction
bands. Several studies'~?"**3 have also pointed out scal-
ing rules of the matnx elements. A combination of these
ideas may lead to an acceptable model. Secondly, both
the bonding and deep-level states of impurities should be
studied at the same time in order to provide correlated in-
formation for defect identification. Finally, more realistic
models should be examined. Besides the substitutional
site-diagonal defects. one should consider the possibility
of interstitial, paired. and even more complex defects.
One also needs to deal with long-range impurity poten-
tials, possible charge shifts, and lattice distortions. Pro-
gress in all these areas can be expected if the calculation is
constantly correlated with experiments and available
ab initio theory.
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Effects influencing the structural integrity of semiconductors and their
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The bond length and energy changes of the constituents of alloys relative to their pure crystal
values are calculated from an extension of Harrison's method. It is demonstrated that the already
weak HgTe bonds are destabilized by adjacent CdTe, HgS. or HgSe, but are stabilized by ZnTe. It
is also argued that dislocation energies and the hardness of semiconductors vary as a high inverse
power of the bond length of the constituents. Hence. the shorter ZnTe bond as an additive should
improve the structural properties of HgTe and CdTe. Experiments that support these predictions
are noted. The electronic transport properties of 0.1 eV band gap HgZnTe are about the same as
those of HgCdTe, and the structural properties of the Zn compound are superior; thus, we
conclude that HgZnTe is likely to be the better material for IR devices.

I. INTRODUCTION

The objective of this work is to understand the microscopic
mechanisms that govern the stability of Hg, _,Cd, Te al-
loys. and then to suggest changes in the material that im-
prove its strength without adversely affecting its electronic
behavior. In pursuit of this goal we have extended Harrison’s
bonding theory,' which is applicable to all tetrahedral struc-
tured semiconductors, to calculate bond length and energy
changes in an allov—including charge shift and reconstruc-
tion effects—relative to their pure crystal values. vacancy
formation energies, dislocation energies, and hardness.

In this paper. we review the experimental situation in sev-
eral of these areas ard compare some of the results with
theory for all the group IV, I1I-V compound. and I1-VI
compound semiconductors and their alloys. For example,
the theory properly predicts the observed inverse ninth pow-
er bond length id ~°) dependence of the hardness” of semi-
conductors and, with no adjustable parameters, their correct
magnitude. We demonstrate that the weak HgTe bond is
destabilized by al'oying it with CdTe, HgS, or HgSe; how-
ever, the bond is stabilized by ZnTe. Moreover, because the
bond length of ZnTe {2.406 Aj is 149 shorter than that of
HgTe(2.797 ) or CdTe12.804 A}, the dislocation energy per
unit length and hardness of the alloys Hg, _ ,Zn, Te and
Cd, _,Zn,Te are predicted in agreement with some experi-
ments to be significantly higher than those of the compounds
with x = 0. Measureme; s indicate that the electron and
hole moothities of Hg, . Zn Te with x ~0.16, correspond-
ing to a 0.1 eV band gap. are comparabie to these of
Hg, _ Cd, Te for x = 0.2." This is to be expected, because
the electron effective mass in a narrow-gap material is small;
hence, the electron wave functions at I, are distributed
over many atoms, with the result that alloy scattering rates
are small at the band edge. The hole mobilities are large for a
somewhat different reason: The valence band edge is mostly
composed of Te p states; however, there is also some cation p
state contribution. Because the p state energies of Hg and Zn
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are nearly the same, the alloy scattering strength at the va-
lence band edge is small. We conclude that, because of its
structural advantage, HgZnTe may be superior to HgCdTe
for infrared devices

. ALLOY MODIFICATION OF THE BOND ENERGY
AND LENGTH

A. Pure compounds

The first task is to recast Harrison's bond energy and bond
length formalism into a structure suitable for generalization
to alloys. Focus attention on the nth bond of a pure zinc
blende structured compound semiconductor; for the time
being, suppress any notation identifying it. Then, in a II-VI
compound, the bond energy is':

Eb=€L“_;_6‘l"_+‘VH+V|_§._2(V§ + Vi)'
: 4
+22(6Jm_+€',,“)+ - {n
=0 d

where the first term is the energy per bond needed to transfer
two electrons from a p state on the group VI atom (the anion)
to a p state on the group Il atom [the cation), so that both
start with four electrons (ultimately in the final bonding ar-
rangement there is a net electron transfer from the cation to
the anion), the second term is the promotion energy per bond
to form sp* hybrids on both atoms, the third term is the bond
formation energy owing to the covalent and icnic terms, the
fourth term is Harrison's metallization energy, and the fifth
term is the repulsive overlap energy that prevents the bonds
from collapsing. The various symbols are defined below:

€, . is the {520} p state correlated term values,*

anion

Vii..=le, ., —¢€,, /4 are hopping intggra]s
between two adjacent bonds coupled througha {ixwr},
€, ., are the {jf,:j;‘,,“} s state correlated term values,

Vi= — 24.5/d eV} is the covalent energy,
d is the bond length,
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Vi=ie_ —e€_/2.

€, =l€, , + 3, .. i/4arethesp’ hybnd energies.

rto-

1
=YV (UL, U, Vel — €
1s the contnibution to the reduction of the bonding state ener-
gy €. calculated by second-order perturbation theory of the
bond 1n question :denoted by superscript o), owing to its in-
teraction with the three neighbonng (i = 1-3) anubonding
states sharing the same {3}

Lanion

U,. =\{l—a,/2=C

a-

U =\I+a,2=0,_,

J -

are the probability amplitudes of finding the cation and an-
ion sp”'-hvbrid contributions to the bonding and antibonding
states, e.z., U, . is the probability amplitude of finding the
cation' hybnd in the bonding state. etc.,

P e e .
a,=V./\y Vi + V5 is the polarity,

2

a.= V. / Vi + Vi is the covalency,
€. +€_  _, =%

€., =_.._;——[_,.{\V5 +~ Vs,

-

are the bonding and antibonding one electron energy states
owing only to covalent and ionic interactions,

T ASUREE ALSNIES S
€, . = ‘ = . =12

€ —€

[

o

are the contributions to the bond in question ansing from 1ts
antibonding state interactions with a neighboring bonding
state /. and y is an adjustable coefficient chosen so the mea-
sured bond lengths are reproduced.

Harnson has written Eg. 1) without explicit reference
to the surrounding bonds. Equation {1) in its present form is
rather easily used for alloy calculations by replacing host
atom terms by one appropriate to the alloy.

The parameter ;- for each compound is fixed by the
condition that there is no net force on atoms at their equilib-
rium lattice positions. This condition is satisfied 1f the gradi-
ent of the total energy with respect to all the bond lengths
vanishes:

Vi Er=0. whereE, =Y E].

The condition is equivalent to the requirement that the net
bond tension T, ~ T, for the nth bond equals the repul-
sive force

45
7‘0‘1 - T‘W" - '. ::O' (2}
d.
where
=9 2V eV = VI~ b isd 13
).»—'(M(—\ e bbb =da b+~ b R
1
.. =2 d Nie,.,+€., .\
(Jd_' ,~\
1
=Sar...~T. (41

afiad .(."("7_‘ kA il - RAACHL K EA A
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Tanm ¥ 1 Correlated term values and bond energies for three 11-V1 com-
pounds. The expenimental bond iengths, polanty. and metallic contnbution
to the bond energy are alvo plotted

Correlated term values ieVi

Atom s P \p

Zn - 10223 —4920 — 6246
Cd - 96l —~ 4783 - 5.991
Hg — 10.946 - 4372 - 6.39]
Te — 19.020 - 9.824 -122713

Bond energies

Compound diAr a, EmetallicieV) E. eV

ZnTe 2643 0682 — 0625 — 0.988
CdTe 2.808 0.710 — 0.466 - 094
HgTe 2797 0685 — 00614 — 0,480

*Reference 12.

The last identity in Eq. (4} defines the indicated bond ten-
sions. Collecting all the results from the earlier paragraphs,
one finds (dropping the bond designation nj:

a’ Vi+V;
r,. =——11l+aa, ~— = €.~ .{5a)
d € — €,
T.. =T,:,, :T;.
a Vi ~V;
=i[‘l—a,laﬂ— — e .. (5b
d €, — €
4 at ViV
I, =—hl—-a,a, — AT - ]é;,. (5¢)
d V€l
T, =T} =T}
af\[«-.._l/: !
= —— [l +a,a, — el (5di
€ — €
Finally combining Eqgs. {11-5), the bond energy is
E,= —1l{l+aybi+ V'’
9 N 2
- - P v
) SIS Sl
. .. €,. —F€,
+‘P,-4-l,‘(+—————’ - {6

Equation (6} was first derived by Harrison using a much
simpler argument.' The bond energies quoted in Table I and
on Fig. 5 are calculated from this expression, using as input
the correlated term values trom Table [and the expenimental
bond lengths.

B. Alloy calculations

There are several lavers of sophistication that can be used
to compute the bond energy and length changes between
pure compounds and their alloys. However, all the calcula-
tions are motvated by the EXAFS expenmental result
found first for Ga, , In, As and later in other compounds.*
Tt was found that, while the average bond length in the alloy
follows Vegard's rule and vanes hnearly between those of the
pure constituents, the individual bond lengths of GaAs and
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InAs are nearly the same as those of the pure materials—
changing by only about 4%. The shorter GaAs bond in-
creases 1ts length when it is an impurity in an InAs host by
about 4. 1nd the longer InAs bond shrinks by about 4% in
the opposite extreme where it is the impurity in GaAs. The
lattice fits together by having the metal sublattice nearly re-
tain its fcc structure wiath a lattice constant foilowing Ve-
gard’s rule, and each As atom adjusts its local position and
accommodates to which metal atoms occupy its four neigh-
boring sites. Thus there are five local arrangements: in the
first an As atom 1s surrounded by four Ga atoms [a
Gai4ilniol configuration], in the second there are three Ga
atoms and one In {g Ga3)In(1) configuration], and the last
three conniguratons are Ga(2)Im2), Gallllni3l. and
Galo!Ini4). In a general cauon A, _ B _C allov or anion
CA, B, alloy, the generalizations are obvious. and one
can examune Aid — 7)Biy);y = 1.2.3.4 configurations.

1. Method |

The lowest level of approximation that takes account of
these findings calculates [from Egs. (1) and :2)] a given
bond's energy and length shift when its surrounding bonds
have different constituents. The caicuiation is done assum-
ing that the surrounding bonds retain their pure crystal bond
lengths. This model is somewhat unrealistic, in that it ig-
nores the sirains that must be present 1o allow the larrice to
fit together. However, it is nonetheless useful because it
treats the large<t terms. viz. those arising from charge trans-
fer between the substituted species in the alloy, and results in
analytc 2xpressions. while the successively more complicat-
ed treatments must be done numerically. It is also useful
later Hecause. taken together with the more complete caicu-
lations. :t ailows one to judge the relative contribution from
different ohisical efects. From Eg. (1) in a cauon-substitut-
ed alloy one can deduce an =xpression for the energy shift of
an AC hond when 7 surrounding bonds are replaced bv BC.
dF; as

S EAR I S : T A |

JE!
e — € (BQO)
U UL ACw, )¢
€ — e)1AQ)
_dd [ [Li vl BCE |
3d €, — €,(BC)
(U2 U Ak, _)?
€. —-6;;.-\C\
S
€ BCi — ¢
[UL_iACL; ¥, ] "
- . /
ehiaC —e

@ here the partial derivative is taken with respect to the cen-
tral bond lengtha term desiznated with a superseript o1 and
n this simple approximation

JEl=nE,, n=0.123 (8]

J. Vac. Sci. Technol. A. Vol. 3. No. 1, Jan/Feb 1985

. MECT 1A
1Ay 1, wAC)

NSRS I

3, vAD

et §

B AI2IB(2) CONFIGURATION

b AIDIBIY) EMBEDDED IN A VIRTUAL CAYSTAL

F1G. |. Schematc view of vanous bond configurations. jal A(31Bi 1} configu-
ration, .bi Ai21Bi2! conriguration, and (c! A(2iBil] configuration embedded
1n a virtual crystai.

The bond length shifts are found from Eq. (2). The modifica-
tion of these expressions for an anion-substituted alloy fol-
lows from symmetry.

2 Method 2

A more realistic calculation includes strain and permits
the lattice to fit together. The simplest non-self-consisient,
near-neighbor version of this calculation proceeds as fol-
lows. In a cation-substituted alloy A,_,B.C
(e.g.. Hg, _,Cd Te or Zn,_ Hg Te), the cations are as-
sumed to occupy their regular fce sublattice sites, while the
anions accommodate to their local configuration. The aver-
age lattice constant is taken to follow Vegard's rule:

d =1 — xi1d ,|AC) + xd4BC), 9)
where d, and 4,BC) are the pure crystal lattice constants.
Then in an A 31Bi1) configuration [see Fig. 1(a1], the anion
will be displaced along the BC bond. For definiteness, sup-
rosed ' AC, - d BCh: thentheanion will be shifted away from
the tetrahedral site toward the B atom. Because
dAC)d -d ;BCL thed IBC bond will be elongated and the
d1ACbonds will also be locally elongated in a strained con-
figuration. We can for this case [see Fig. l(ai] write

dBC) =(1-684d (10)
and for the three AC bonds

dIAQ) = (1
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In an A(2)B(2) configurauion [see Fig. 1(b}], we have for both
BC bonds

dBC = |J1-25 +1523 (12)
3973

and for both AC bonds

dIAC) = 1+%5 +%5:Z. (13)

The values of § are determined by the condition JE/
35 =0, or

s (T + 7T, -

< =0. (14)

a=0

4y, ) ad,
d, as
Equation 114} is solved by

{I1 Assigning the y,s their pure crystal values.

{21 Supposing that the four tetrahedrally configured an-
ions are embedded in the virtual crystal [see Fig. 1(c!].
(3) For each x. § is vanied and the bond tensions are
calculared and inserted into Eq. {14) until a value of § is
found that satisfies this equation.

The computer outputs are § and the AC and BC bond ener-
gies. This method can be extended to take explicit account of
the bond iencth variations of larger clusters, and d can be
calculated explicitly (instead of using Vegard's rule) so the
results can be made to be seif-consistent. Also, effects arising
from bond angle distortions can be included. The major ef-
fects that are currently included in the calculation arise from
the bond length dependence of V,, and charge shifts driven

2907 T T
‘ e
' —————=iaTe
i
f e
;
|
288~ 4
! CONFIGURATION
HyTe rdTe
- N o MW JICHT)
eI __A--—-L-—u‘m:am
R et N
—— =TT - P L 1]
NS S L b bt N g QiCa}
=T AIC0)
18 -
- [ 1T, ]
—— e
P - — i — ‘
JENEEPNIRS SSYIN ]
e an —— - —— P
—_—— e e e i 1ICOI
e — . —
e = — -
.
IR B
|
|
1
i J
10+
{
!
L 1 S W 1 .
3 SO a7 31 ae 1y ek 01 0x 3% 0
il ] ta'w

Fiti. 2. Bonu engths as a function nf concentration s for the He,  Cd, Te
alloy 1n diffzrent configurations. The short dashed lines are tor the CdTe
bonds and the long-short dashed hines represent the behavior of the HgTe
bunds.

T e T e e e e e T

et
AT e, RO

p ‘-',

108

et 4y § RAGE

CONFIGUAATION
N e — - —_— . ———— e My tiCas 3}

TSI AD

______ Sa raidica
;
! i J
1L . —_ S
a8y 31 83 3¢ 8s 8E 081 3% 33 19
Mele . CaTe

F1G. 3. Bond energy as a function of concentration x for the Hg, _ ,Cd, Te
alloy 1n different configuratuons. The short dashed lines are for the CdTe
bonds and the long-short dashed lines represent the behavior of the HgTe
bonds. The solid lines are the concentration wesghted averages of the respec-
tive bond energies.

by hybrid energy differences and coupled through the metal-
lization terms. However, V. is also sensitive to bond angle
distortions, and these effects are not included in the present
results. We expect their inclusion wiil modify the quantita-
tive results by 109%-30%%, but not the trends.

C. Resuits

The correlated atomic term values® for the elements in the
more common [I-VI compounds are listed in Table I, along
with the bond energies of their nine compounds. The valence
s state energies for Zn are large. become smaller as for Cd.
and then (in an unusual occurrence! the trend reverses and
the Hg s levels are dezper again. This is caused by the relativ-
istic terms that become important in Hg. The p state levels
have a similar trend: however, the differences among the
atoms are much smaller. The levels of the anions are deeper
than those of the cations. Thus. there is a net electron trans-
fer from the cations to the antons. which is responsible for
the fonie contribution to the bonding The polanity, also lis:-
ed in Table . reflects the refative contribution of ionic and
covalent character 1o the bonds. Nouce that @, ts small for
ZnTe larger for CdTe. and smaller again for HgTe. By con-
trast, the metallie contribution £, is large for ZnTe and
HgzTeand smail for CdTe. In fact. H2Te would not be bound
if 1t were not for the metallic contribution to the bond. not a
terribly surprisig result, because HgTe is a semimetal. The
bond lengths or CdTe and HgTe are very nearly the same,
but thisis an acaident resulting from the balance of contribu-
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109 Sher et al.: Eftects influencing the structural integrity

tions to their bonds: CdTe is dominated by the covalent and
ionic contributions to its bond, while HgTe has bonds that
are mostly covalent and metallic. We should therefore not be
too surprised if their alloy displays some unusual bond
length varrations.

Figures 2 and 3 illustrate the Hg, _, Cd, Te alloy concen-
tration vanations of the length and energy for the five config-
urations. These results were calculated using the second
method discussed in Sec. II B. In Fig. 2 we see the unexpect-
ed result that the shorter HgTe bond becomes still shorter in
the allov, while the CdTe bond length increases. Moreover,
the changes are large compared to the original length differ-
ence. Thus. one can expect to find local microstrains. even in
this nearly lattice-matched material. The bond energy varia-
tions shown in Fig. 3 also display an important result. The
already weak HgTe bond is destabilized by the presence of
Cd. The flat concentration variation of the bond lengths and
energies is peculiar to HgCdTe: much more structured beha-
viors are exhibited by other compounds.

Several considerations to keep in mind when dealing with
alloys are depicted schematically in Fig. 4 for a Hgi3)Cdi
configuration. Due to the charge shift alone, the HgTe bond
shrinks by 0.030 A. the minimum in the configuration dia-
gram moves to a smaller bond length and the depth of the
weil is decreased. Then the bond is stretched by 0.011 A toits
final length. Thus, the bond is not centered at a local mini-

HqTe

0038 .
|
1
: '
i °
] !
i
| e pos Te_X Hadicain
|
U o~ S
: Hg Cd
t
|
1
|
|
Vi I|
—-  —(0R9
\ 2205 | : CaTe

0313

Fte,. 4 Schematic pcture of 3 poteatial configuration diagram for the HeTe
and CdTe honds in an Het3iCd 1) configuration. For the HeTe bond the
enerav and posttion of the bond c2nter are caleulated by methed 1 of Sec.
IT B and the final stretched position and energy by method 2. The results
quoted for the CdTe hond are those determined by method 2.
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F1G. 5. A:_ bond energy shifts for the 1I-VI compounds 1n A(1)B(3) configu-
rations expressed as a percentage of the pure cryvstal bond energy. The B
atom 1s designated in the line that shows the shift. The pure crystal AC bond
energies and lengths are given at the top of the figure. These numbers were
calculated by method 1 in Sec. II B.

mum. For example, this implies that the force constant of
local phonon modes will be related to the second derivative
of this configuration diagram evaluated at the strained posi-
tion away from the well minimum. This effect is even more
pronounced for materials with a larger lattice mismatch.
Notice that the CdTe bond is also stretched relative to its
local minimum in this configuration.

The result for bond energy variations for all the II-VI
compound alloys is gathered in Fig. 5. Here the energy shifts
of an AC bond in a A{1'B{3) configuration AE} = 34 E, are
presented as a percentage of the pure material bond energy
for cation substitute alloys along with equivalent results for
anion substantial alloys, e.g., HgS, _ , Te, . The energy shifts
are calculated following the first method presented in Sec.
II B. We have not had the opportunity to run all the com-
pounds following the more sophisticated calculational pro-
cedure. The bond at the top of a column is the one whose
energy shift is calculated. and the other constituent is identi-
fied in the line that indicates the energy shift. A negative
3AE,/E, is destabilizing and a positive one stabilizing. Fo-
cus on HgTe. It is destabilized by CdTe, HgS. and HgSe, but
s stabilized by ZnTe. The CdTe destabilizes the HgTe bond
by 18 according to the simple calculation and by 15%
according to the better one. The difference between Zn and
Cd occurs because in the Cd case there is a net electron trans-
fer from the Cd to the Hg, while in the case of Zn there is
practically no such transfer. These extra transferred elec-
trons must occupy antibonding states, because the bonding
states on the H:Te are full, so the net effect (including other
energy state shifts) is to destabilize the HgTe bond. This pre-
dicted destabilization of the HgTe bond in HgCdTe alloys
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F1G. 6. Theoretical vs experimental hardness. The two values at the top and
bottom of the vertical lines designated for each compound were calculated
for two different possible dislocation arrangements. The lower one corre-
sponds to the minimum energy configuration and the upper one to a likely
higher energy configuration. The experimental numbers were taken from
Rer. 2.

agrees with the & state energy shift reported by Spiceretal. at
last vear's workshop,” and by the oxygen uptake expen-
ments presented by the same group at this conference.’

11l. DISLOCATION ENERGIES AND HARDNESS

The dislocation energies and hardness of semiconductor
are calculated by an extension of Harrison's method.' It is
demonstrated. in agreement with experiment, that disloca-
tion energies per unit length, depending on the covalency,
are proportionaltod ~”, whered is the bond length and hard-
ness is proportional tod ~*tod ~''. The low powers are for
pure covalent materials. The hardness is related to the inter-
action energies among dislocations. The detailed theory will
be published elsewhere.®

Figure 6 shows the theoretical hardness of several semi-
condu.tors plotted against experimental values.” The theory
is calculated for two different dislocation configurations
caused by the extra material pushed by the indentor into the
crystal. The lower end of each vertical line is a realistic hard-
ness for the minimum energy configuration. and the upper
ends of the lines are the values found for a higher-energy
configurat: n. In most cases. one would expect real configu-
rations to have hardnesses lving somewher: between these
two values, once the effect of heat generated by tie indention
process is subtracted from the experimental numbers. This
theory has no adjustable parameters, vet it predicts the right
trends and magnitudes.

IV.NATIVE IMPERFECTIONS GROWN INTO ALLOYS

There are two kinds of imperfections we shall discuss: va-
cancies and dislocations. At present, the conclusions are ten-
tative, because the detailed theory is still incomplete. Va-
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cancy formations energies and the melting temperature are
both proportional to the bond energies of the constituents.
Thus, one would expect the vacancy density just below the
melting point to be about the same for ail materials with a
similar coordination number: in our semiconductor case, the
coordination number is four. Dislocation energies are most-
ly owing to long-range bond angle distortions® and accord-
ingly are sensitive to the sheer coefficients, which vary
roughly asd ~’ for many compounds.' Based on this general
argument, one would expect to find fewer dislocations in
materials with short bond lengths.

Dislocations appear in bulk grown maternials through a
sequence of steps.'® We shall only discuss the simpiest case,
where there are no mechanical stresses on the growing mate-
rial. In the temperature gradient Hehind the growth front,
there is usually a supersaturated vacancy content. These ex-
cess vacancies may diffuse to surfaces where they do no
harm, or thev may condense into vacancy clusters that can
then orgamize into dislocation loops. If a loop is not parallel
to the growth front, it can climb toward the front by absorb-
ing more vacancies. If it climbs faster than the growth pro-
gresses, then the loop will reach the front. It can then spread
and grow along with the crystal. Observed from the growth
surface, such a loop will appear to be two edge dislocations.
If this dislocation formation process can be inhibited in any
of its steps, the resulting materiai will have fewer disloca-
tions.

ZninZn, _ Cd, TeorZn, _ Hg, Te will serve this func-
tion in two ways. The first is that Zn stabilizes the weaker
bond in these alloys: accordingly. vacancy formation ener-
gies in the alloy should be larger than those in the pure con-
stituent CdTe or HgTe. The melting remperature will also be
raised somewhat: which effect “wins™ is a matter still to be
decided. The second effect is clear cut: The shorter bond
lengths of the ZnTe will introduce sti:T struts into the system
that will increase the dislocation energies and thus should
inhibit dislocation loop formation and subsequent climb.
The large dislocation density reduction found by Bell and
Senin Zn, _ ,Cd, Te with only 49 Zn supports this specula-
tion."'

V. CONCLUSIONS

We have argued that, in an alloy. the bond energies and
bond lengths are modified from their pure crystal values.
Bond energies can be strengthened or weakened in an alloy
depending on the relative sp® state energies and the conse-
quent net electron shift between the constituents. For most
compound-, the average bond length modifications for each
tvpe of bond are generally small compared to those suggest-
ed by Vegard's rule, in agreement with experiment. How-
ever, HaCdTe is an exceptional case. because the bond
lengths for HgTe and CdTe are nearly the same (by acci-
dent). The bond length and energy shitts also depend sensi-
tively on the local configuration and the bonds are locally
strained. These effects must be taken into consideration in a
proper theory of alloy vacancy formation energies, phonon
frequencies, dislocation energies, ete.

The conclusions most relevant to the initial question
posed in the introduction are that for the narrow gap allows:
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PHENOMENA INFLUENCING THE DISLOCATION DENSITY OF
SEMICONDUCTOR COMPOUNDS AND ALLCYéa)

A. Sher, SRI International, Menlo Park, CA 94062

An-Ban Chen, Auburn University, Auburn, AL 36489

(b

W.E. Spicer , Stanford University,

Stanford, CA 94305

Abstract

The objective of this paper is to identify the principal microscopic
phenomena controlling dislocation densities in bulk grown semiconductors.
Then, based on this understanding, a strategy for selecting materials to reduce
dislocation densities is offered. The relevant quanctities are calculated from
an extension of Harrison's bonding theory, which, with our improved accuracy
relates properties of the solids to the constituent atoms'’
energy states and wave functions. We report on the alloy composition varia-
tion of bond energies, bond lengths, charge redistribution among coastituents,
vacancy formation energies, dislocation energies, and hardness. Scveral

III-V and II-VI compound semiconductors are treated including, GaAs, GalnAs,
HgCdTe, and ZnHgTe.
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Introduction

According to a currently accepted model (1) of the mechanism leading to
disiocations in bulk-grown material at a ziven temperature and temperature
gradient behind the growth front; their density is governud by:

® The vacancy density that depends on the formation energies,

® The competition between vacancy annealing rates and vacancy
interaction caused clusters,

® The condensation rate of these vacancy clusters into dislocation
loops, and

® The subsequent growth rate of these loops.

The objective of this paper is to identify some of the principal microscopic
phenomena controlling these features in semiconductors compounds and their
pseudobinary alloys. If any of the foregoing steps can be inhibited, then
there will be fewer dislocations in bulk-grown cryscals.

A model of the bonding of tetrahedrally coordinated semiconductor com-
pounds due to Harrison underlies this work (2). He has derived expressicans
for the bond energies and strain coefficients of pure semiconductor compounds
in terms of the constituent atom's valence state wave functions and energies.
There are four contributions to the bond energies:

® A covalent energy arising from the interacticn between sp3 hybrids
on adjacent sites, which, according to a universal rule deduced
] by Harrison, is related to the inverse square of the bond length, d,

® An ionic enerzv which is proportional to the enerzy difference
between the sp’ hybrid energies of the anion and cation,

® A metallic energy arising from the interaction between filled
bonding and unfiiled antibonding states on adjacent bonds, and

® An overlap repulsion energy which is taken to vary as 47",

The shear coefficients, which plav an important role in dislocation energies,
are shown to vary for covalent soiids as the covalent energv per cell unit
volume or as d=3. The ionic energy arising as it does from coulomb inter-
actions, is insensitive to bond angle distortions and depends only on bond
lengths. Thus, in the ionic semiconductors the shear coefficients are reduced
from those of equivalent bond length covalent compounds, but aiso the power

law dependence on bond length increases to a-il for the extreme ionic limig (3).
The metallic interaction is bond angle sensitive and contributes to the g-1il
power law.

We have modified Harrison's theory in several ways (3) (4). Firset,
instead of using atomic term values as the input energies in the bonding
calculation, we use correlated atomic energies that take account of all the
atomic electronic energy changes associated with a state change. In our prior
publications these energies were calculated from pseudopotentials (3). 1In
this paper we have modified the procedure and taken the ground state energies
from free atom ionization experiments, and only calculate the excitation
energtes from the pseudovotentials. Second. the Harrison's theory has been
extended to allovs in which each tvpe of tne individual bond's enerzv and
lengzh changes and the net allov substitution enerpies are calculated. A
theory of dislocaticn energies ard hardness of seniconductors has been advanced.(s)
In this paper the second item will be empnasiced since item one is less
relevant to this conference and these will be publiished elsewncre.
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Bond Length and Energy Changes io an Alloy
Single Impurity
Start by considering the simplest defect, one cation of a host semicon-
ductor compound AC is replaced by an iscelectronic icpurity I, as sketched
in Fig. 1. This will be generalized to an ABl-xCx allov later ans the cation
substituted case A)_;B,C follows by symmetrry. To studvy the principal effect
of core lattice distortions, we allow
the positions of the first shell of
atoms labeled by bond length dy to move,
but fix the atoms of the second neigh-
bors and beyond at their pure-crystal
positions. Eventually, the effects of
long range strain fields, generated by
a point distortion, must be added to
this core distortion. Here we allow
only three different bond lenqthi
dy = (1-6)d, dy = (1 + 2/38 +62) /2d.
and d3 = d, where d is the bond length
of the pure host AC cowmpound, and § is
a scale parameter.
There are four bonds with energy
E;, twelve with energy E;, and 36 with
energy E;. These energies can be
Schematic represeantation of the written in closed form in the Harrison
Sonds around an atom of interest theory. The energies E; and E» differ
(designated by the square). The from the host bond energy E, because
first, second, and third neigh- of bond length and angle distortions
bor bouds are designated dl’ dz. as well as difference in the ionic
and d energy of 1 and C atom induced charge
3 transfer. The energy Ey differs from
E, only by the charge transfer coupled
through the metallization terms. There
are two interesting energies we cam calculate. The first is the energy Ag
required to substitute the I atom for a C atom, i.e. bring a free I atem from
infinity and replace a C atom that is taken from the crystal and removed to
finity.
Ag E4.’,514‘12‘&52*‘36AE3-(o:c-n:l) (1)
where pE, = E, = E , § = 1,2,3, and ¢, and ¢, are the free arom valence elec-
tron biu&ing Anergges. The second is the bond energy change of the impurity
Al bond relative to the bond energy of a pure Al compound, denoted Ly
. '
b = AE; - % (e - tc) (2) ) .g

This energy tells us if the AI bond is stabilized (a7 < 0) or destabilized i-'l-
(Ay > 0) when it is in an AC host. If we define &, as the bond energy dif- .o
ference between the IA and CA bonds each in their respective pure crystals e

b, = BE(IA) - BE(CA) (&)

then one can write

Lg = by *Lg, %)

where Lo is extra energv differeace caused by strain and charge transfer.

AP I B R

7 -~

- ’I -l T
. "B
PR

.
~
[




LIRS Y0 M S 0 Tt i s i s 0

The energyes E., and bond lengths d,, j = 1, 2,3, are calculated by mini-
mizing Ag. If we lé: dr = dgy (1 - &) ahere dy is the bond lengrh in the
pure AL lattice, then the approximate expression

[

o (5)
§ = <
R Bty

3 BI 27 BI + (small terms due to charge transfer)

can be deduced. The bulk modulii B of the host and B, of the impurity lattices,
and a shear coefficient Cp; - Cy; of the host appear in the expression. While
this expression is approximate, the effects of the various tvpes of strains
can be visualized using it. Our detailed calculations are done using the full
theory. If one fixes the bond lengths dy = dl = dy = dgy, then § = §, and the
strain energy Ag. is large and positive. If one ailows only bond length dis-
tortions (C13 - Cy2 = 0) then 6 is reduced and the bonds tend to adjust so

dy = dI' This reduces dse considerably from the undistorted lattice case.

If dr > d, then both bonds are stretched somewhat, dy - dy > 0 and d» - dy > 0.
However, this configuration produces large bond angle distortions. When the
shear coefficients are turned on the lattice relaxation is modified and the
bond lengths cannot adjust as wuch, so dy differs from dy by a larger amount.
The net result is that Age is increased since one pavs the price aof strain
energy either as a bond length or bond angle distortion.

1f we calculate § from the full theory, then we predict values that are
too large. This occurs because the theory predicts Cy; - Cy2 which agree well
with experiment but it predicts bulk modulii with the proper trends from one
compound to inother but which are about a factor of 2.4 too small. If we use
the experimental values of the strain coefficients in Eq. (5) then good agree-
ment is found with the experiments (5) on Gaj_,In.As and ZnSe;_ Tey. The
results are quoted in Table I.

Table I. Bond Lengths in A for Impurities in the Indicated Host

Ga in_InAs In in GaAs Se in ZnTe Te in Znfe

' ' Experiment (O 2.487 2.587 2.49% 2.595
Eq.(5) and Y

. .54 .510 2.570
experimental B&C 2.499 2.547 2.51 57

Full Theory 2.538 2.518 2.570 2.512

Alloy

In an A,  B,C alloy the four cations around a given C anion can be

arranged in H¥eateterent configurations, denoted by A(4=T), B(T), T = 0,1,
2,3.4. An A(2) B(2) configuration, for example, is one in which the C atom
has two A atom and two B atom neighbors. It is pussible to soive the full
alloy problem for larce clusters, but for now we have restricted the cluster
to near neizhbors only, and in Fig. 1 the central atom is now an anion C and
dy = dy = dafs are taken to be an effective medium bond length that is deter-
mined self--cnsistently. The different tonds of tvpe 1 no longer have the
same lengtn. The procedure is as follews: First assume a value for dggg,
33y the virzual crvstal bond lenzth (l-x) d fary + xd B Nexe calculate
the dy values for the various configuritiecns sy minimizing the energy of the
confiaurition, Thrn, i gration averace the various 4 values to find a
new d Then iferzate (1o, yrocedure uncil it converges.

T e e

eff”
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k Figure 2: Bond length (a) and energy (b) of Ga;_,In.As
as functions of x. The dashed curves are the average values

for the designated bonds, and the solid curved are the alloy
averages.

Because the bond angle dilstortion terms are unphysically large we have left
them out of the present calculation. Hence bond length shifts will be some-
wvhat too small.

Results for the bond energy and bond length shifcs with councencration are
given for Gaj_,IanAs in Fig. 2 and By_,In.P in Fig. 3 as examples of two
different behavior patterns. The predicted trends for GalnAs agree with
experiment but the bond length changes are too small as expected with the bond
angle distortion terms absent. Notice that the longer bond in this case de-
creases in length and the shorter one increases as expected. However, in the
BInP case the charge shift terms are so large that the longer In? bond has a
minimum as a fucntion of composition rather than a monotonic decrease. Be-
cause of the large bond length difference between BP and InP there 1is probably
a missability gap in this alloy that prevents these compositicns from being
prepared. However, one may be able to examine the variation of the anomalous
behavior of the laP boad in a BP host (x << 1).

Thq ﬂgl_xcd‘Te systen.ts completely anamolous. The bond lengths of CdTe
s (2.805% A) acd HgTe (2.797. A) are nearly the same by an accideat. CdTe bonds

. are dominated by covalent and ijonic interactions, while HgTe is more covalent

! and the metallic terms are importaant. The mix of interactions i{n the two

> cases leads to the same bond lengths. When an alloy i{s made the charge shift
f’ terms dominate, and they cause the longer CdTe bond to become still longer and
: the HgTe to comtract by amounts that are large compared to the pure crystal

! difference. Moreover, the already weak 8gTe has its bond energy reduced still
more by the presence of Cd. Since the melting point of HgTe increases as Cd
is added and the local strength of HaTe bonds adjacent to a Cd decrease,
vacancy densities will increase. All these and other observed phenomena are
predicted by the theory. A complete catalog of results requires more pages
than we have bevn allocated ian this article, but we have tried to offer a

representative group.
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Figure 3: Bond length (a) and energy (b) of 5l-xI“xP as
functions of x. The dashed curves are the awverage values
for the designated bonds and the solid curves are the alloy
averages.

Conclusions

We have demonstrated in agreewxent with experiment that dislocation energies

“and hardness of sesiconductors are proportional to the shear coefficients which
vary roughly as d-9. Thus to decrease dislocations in a given semiconductor
one should inhibit zheir formation by introducing some weans of shortening
bonds. This should be accomplished without also decreasing the ratio of the
vacancy formation energy to the melt temperature. While detailed calculatiomns
to support the following contentions are still incomplete, a set of criteria

oo an impurity (denoted I) in a host semiconductor (denoted H) that are likely
to satisfy these conditions are: the bond length of the impurity is smaller
than that of the nost dy < dy. the smaller bond energy is stabilized in the
alloy min {AEbH. LEbi} < 0. In these circumstances, the average bond length
will shrin« and in tne vicinity of each impurity the four surrounding bonds
pearly have the length of the impurity but are stretched slightly. The next
neighboring host bonds are also stretched. The net effect i{s an arrangement
wvhich is more rigid than the unperturbed lattice and consequently the local
shear strain energy increases, causing dislocation energies to increase.
Examples of this case are By_,(a,As, and In)_,Hg,Te. Both B in GaAs (6) and

Zo in HgTe (7) have proven to be effective in reducing dislocatioo densities.
Unfortunately, B has a low solubility inGaAs and {t {s not clear that enough
can be gotten in to make it easy to prepare dislocation-free material.

A second case where an improvement occurs is if dy > dy, and again
min *AEbH' AEbI\ > 0. 1In this case each of the four longer impurity atom
bonds are cozprec<sed by the surrcunding host bonds and, more lmportantly, the
twelve next neighbor host bonds are aiso coopressed. Once again for small
{mpurity conmcentrations the net disiocation energy should be increased. BHow-
ever, in this case the efiect is competlag apcinst a net bend lengthening
trend of the alloy which 1s tendiag to make 1t less rigid against a shear, so
at higher concentrat:ions the mechaaism should cease to function. An example




of this case is Gay_.. In.As, where In has proven to be effective in dislocation
recuction of Gaas (8). N

We have demonstrated that our modification of the Harrison bonding theory ;¥.
accruately predicts the observed change of bond lengths in semiconductor alloys
and offers guidance to means for dislocation reduction. ~
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SEMICONDUCTOR ALLOYS: LOCAL BOND LENGTHS,

MIXING ENTHALPIES, AND MICROCLUSTERS

A.B. CHEN* AND A. SHER+t
*Physics Department, Auburn University, AL 36849
$+SRI International, Menlo Park, CA 94025

ABSTRACT

Several recent theoretical studies of the local structure of semiconductor alloys are
summarized. First, dilute limit calculations of local bond lengths and mixing enthalpies
are discussed. These calculations include effects due to both bond length and bond-
angle distortions, as well as local chemical rearrangements. Then, a new statistical
theory of concentrated alloys is described. Deviations from random alloy distributions
(microclusters) are predicted.

INTRODUCTION

This paper summarizes our recent theoretical studies directed toward understand-
ing the microscopic structures of pseudo-binary semiconductor alloys A,B,_,C. We first
present a detailed calculation of the local bond length relaxation in the dilute limit
x — 0, i.e. the case where an A atom is substituted for a B atom in a BC compound.
The mixing enthalpy parameter 0 is found to be related to small excess substitution
energies. These excess energies are calculated directly through a minimization pro-
cedure. Thus, the accuracy of the predicted @ is not limited by trying to find small
differences between large numbers. The theory is then generalized to concentrated
alloys using statistics based on combinations of tetrahedral clusters of five atoms. Our
results predict that microclustering occurs in a majority of alloys. We conclude by iden-
tifying systematic correlations between the theory and several experiments.

Before discussing the calculation, it is useful to provide some background about
the structure of these alloys. It was customary to assume that these alloys have two
sublattices in which the C atoms occupy one sublattice, and A and B atoms are ran-
domly distributed on the other. This picture, referred to as the virtual crystal approxi-
mation (VCA), implies that the nearest-neighbor (nn) bond lengths in the alloy are the
concentration weighed average values, i.e. dyc = dgc = d = x d{¥ + (1-x) d¥ where
the values with a superscript (0) denote the pure-crystal values. On the other hand,
according to Pauling’s covalent radii approximation (CRA), the local bond lengths
retain their respective pure-crystal values, i.e. dgyc = df¥ and dgc = dg

If we define 6, = (d - df¥) / d and 6§ = (d - du¢) / d, then the ratio §/6, in VCA
is zero, but in CRA it is 1. However, Mikkelsen and Boyce(!) found from their EXAFS
experiment on Gaylnj.yAs that the nn bond lengths do not fit either VCA or CRA.
Instead, they found the value of /6, to be close to 3/4. Since then, similar experiments
have been done for a number of zinc-blende pseudo-binary alloys.(” and the 3/4 rule
appears to be quite general.
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The dilute limit is the easiest case but is still not trivial. Its solution provides
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-
) both end-point results (x = 0 and 1), as well as insight into the extension to the concen- ".\:
o trated alloy case. A complete description of this case is being reported elsewhere; here S
" we summarize the essential results. The substitution energy A, for an A atom replacing -:-t .
a B atom in a BC compound is calculated and minimized to find the relaxed :j*.
configuration. A, can be written as Ay = 1 (AEy + AE; + AE;), where AE, is the .
binding energy difference between the AC and BC compounds, AE; is the strain energy, F
o and AEy is a chemical energy shift. All AE' s are energies per bond. Then, '.j-'.'.‘
" AE = AE; + AE, is the excess energy per bond for the impurity substitution. AE; is o
- calculated by dividing the crystal into two regions. Outside R (which is the distance of
N the second-shell atoms to the impurity), the distorted crystal is treated as an elastic con- -
tinuum with a radial displacement field which is inversely proportional to the square of e
' the radial distance, so AE{®*Y = 1/4RCu?, where C is an effective shear coeflicient, .-f
i
: C = (1.8 (Cy; - Cyp) + 4.8 Cyy)s (1) ::i

s
E
o,

»

and u is the magnitude of the displacement at R. Inside R, the strain energy As('“) is
treated with a valence force field (VFF).(? Finally, the chemical energy shift AE, is cal-
culated from Harrison’s model and arises from changes in the metalization energies
caused by different bond lengths Ad = dgc-dsc and covalent energies
AV, = V,4(AC) - V4(BC). Note that b = (¥ - dfQ) / df¥ and
6= (d§¥ - duc) / dg@ in this dilute limit, so the excess energy AE can be expanded up
to second order in §, u, and AV; For a given pair A and B, AE is an explicit function of
6 and u. Minimization of AE with respect to § and U leads to the equilibrium local
bond length dsc and energy AE. Then, AE is used to estimate the mixing enthalpy
parameter {2 in the mixing enthalpy AH = x(1-x)? by

‘ 'I‘

@ = 2 (AE (A in BC) + AE (B in AC)). (2)

A systematic comparison with other models based on strain energy alone shows
that an increase of the range of the fixed boundary R increases the relaxation of dsc, i.e.
it causes 8/8, to increase. The inclusion of the bond angle restoring force, on the other
hand, reduces the relaxation. It turns out that a delicate canceliation of these two
eflfects causes a simple spring model pointed out by Shih et al. (SSIIS)(3) to yield accu-
rate results. In this model 6 =6,/ (1 + 1/3 a/q;), where a and a; are the bond-
stretching force constants for the host (BC) and the impurity (AC) crystals, With
a = qq, this model predicts § = 3/44, for a zinc-blende alloy. Although our full pertur-
bation theory (FPT) and the VFF model of Martin and Zunger (MZ)*) predict d, with
an average absolute deviation comparable to the experimental uncertainty of 0.01A, the
simple spring model is even better.

We note that while in our theory, MZ and SSHS, the £ values are directly calcu-
lated without any adjustable parameters, our theory and SSIIS agree with the experi-
ment as well or even slightly better than the one-parameter theories.>®) Although our
theory predicts a negative @ value for all three (Ga. Al) alloys, the magnitude
(1 = -0.17 keal/mole) is too small to account for the ordering of Ga Al (As grown at
600 to 700°C found reccntly.(7) The calculated 2 values also provide guidance in
separating miscible from immiscible alloys. In a random alloy, the criterion for alloy

9
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2.
h'_..
mixing for all x is T > T, where the critical temperature T is given by T, = /2R, :‘.‘g
with R, being the universal gas constant. Figure 1 is a plot of T /T, against %
{661/ 18651 ,» where T, is the lower of the two constituent's melting temperatures, and A,
b = 1.63x, with x, being the ratio of rms bond length amplitude fluctuation to the o

bond length at T,. The simple spring model gives T /T, = (6y/6y,)? as indicated by the
solid curves,

o

v v

There is an empirical rule stating that a miscibility gap will occur if | & |
between two alloy components exceeds 7.5%. However, if T,/T, is plotted against
| 8 | » the simple spring model would not exhibit a smooth simple quadratic curve, and
our theoretical points would be much more scattered. This suggests that
{601/ 16m] > 1 is a better criterion than |& | > 0.075. Figure 2 also clearly shows
the chemical effects, namely negative and positive chemical energies AE, for cation and
anion substitutions respectively. The full theory and the experiments correlate within
the experimental uncertainties. The simple SSHS model clearly is an excellent universal
representation. However, T /T, varies faster than quadratically for larger | &,/6
- values, as born out from both the experimental data and the full theory.

m |

] CONCENTRATED ALLOYS
r

Turn now to the concentrated alloy case. First, an improved statistical model is
required. We have extended regular solution theory based on pair energies to one for
five-atom clusters. For an A,B,,C alloy, the building blocks are clusters of
A(m)B(+-m)C, where m ranges from 0 to 4. For a given alloy concentration x and for a
given set of energies ¢, associated with these clusters, we have derived expressions for
the cluster population distribution x, = fi; / N, whers N is the total number of unit
cells and T, is the averaged number of cells with A(m)B(4-m)C clusters. The partition
function Z is obtained using a steepest descents argument which then yields the mixing
Helmhotz free energy AF. The result reduces to Guggenheim’s tetrahedron casel” if
pair potentials (for the second-neighbors) are assumed. Anotiier major difference is that
we only need to solve a single quartic equation, while Guggenheim needed to solve four
simultaneous quartic equations.

The key to the problem, however, lies in the calculation of the energies €. If one
assumes that the size of the tetrahedra for all m-clusters at a given alloy concentration
takes on the corresponding VCA values but allows the central C atom to relax, then the
energies as functions of x behave like those shown in Figure 2(a). There are at least two

major flaws in this result. First, the energies are too large and would correspond to 0 N
values many times the experimental values. Second, at x = 0.75, 0.5, and 0.2, these };;:-
energies imply compound formation for A3zB|C,, A,B,Cy, and A|B3C,, respectively,
which is opposite to the known tendency for spinodal decomposition of GayIn;_,As at T
low T. lHowever, if the local cell volume of each cluster is allowed to be in mechanical v

equilibrium with a continuous medium with an effective shear coeflicient =
C = XCAOC), + (1-x) C}{?), where the C value for the pure material is given by Eq. (1), T

then, the corresponding energies ¢, as a function of x are given in Figure 2(b). which ::-fj
now vields a reasonable value of mixing enthalpy and correctly predicts the tendency -:::‘
toward spinodal decomposition at low temperature. With this set of energies. one can RS
then calculate the cluster distribution xp, and compare them with the corresponding Y
values for a random alloy, i.c. x[® = (1,)x™(1-x)" ™. Figure 3 shows the deviation }

from randomness Ax,, = x, - X% as a function of x for four arbitrarily chosen growth
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temperatures. It shows that Ax, can be several percent at ordinary growth tempera-
tures and there are deviations from the symmetric behavior about x = 1/2 predicted by

y |

the pair energy model. '4._—}
NS

It is also interesting to examine the sets of bond lengths d{B) and d{® correspond- .’::';_]

ing to the € values of Figure 2(b). The spread in the d values among different clusters i-'_':-\.‘
is found to lie within the width of EXAFS lines. '?'-rlt

3355

The existence of microclusters, whose populations deviate from those of a random

alloy, will impact on many experimental results. These include phase diagrams, EXAFS )
line positions and widths, magnetic quadruple splittings, modulation spectroscopy :'_‘-'::
widths, Raman [requencies and intensities for different modes, etc. We have demon- j".:'w
strated that the theory agrees with EXAFS and measured mixing enthalpy parameters. _,_..j

It should be tested against more experiments to further our understanding of the struc-
tural properties of semiconductor alloys.
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SEMICONDUCTOR PSEUDO-BINARY ALLOYS:

BOND-LENGTH RELAXATION AND MIXING ENTHALPIES

*
A.-B. Chen, Physics Department
Auburn University, Alabama 36849
A. Sher, SRI International

Menlo Park, California 94025

Harrison's bonding theory, the valence force field (VFF), and an
elastic continuum are combined to study the substitution energies AS and

local bond lengths d, of isoelectronic impurities in semiconductors.

1
Explicit expressions for As and d1 are derived, which enable us to absord
measured elastic constants into the calculation and to study the chemical
effects arising from differences in the covalent radii and polarities.
Several models based on VFF alone are also derived for comparison. The full
theory and at least five VFF models are found to produce impurity bond
lengths in excellent agreement Qith experiment. The substitution energies
are shown to provide good estimates of the mixing enthalpies @ of pseudo-
binary alloys and to predict miscibility gaps properly. The chemical shifts

in Q are found to be negative for most cation alloys but positive for anion

substitutions.
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. I INTRODUCTION

"’
e

A

2

The discovery of a bimodal distribution of the nearest-neighbor bond
. lengths1 in GaxInl_xAs has sparked considerable interest in the bonding
nature of semiconductor alloys.z.'6 This finding has changed the
e conventional picture of the alloy crystal bond configuration, which has far-
reaching implications about the electronic structure, structural stability,

:3 and thermodynamics of these materials. Because of the complexity of both

i~ the structural and the potential disorder in these alloys, ab-initio band-

o structure techniques have not yet evolved to a stage suitable for direct P
: %
L calculations. Therefore, we have extended Harrison's bonding theory7 to ;t
- *\
< (l study the alloy structural properties.5’6 In this paper, we apply an i}
N intermediate version of the theory to the dilute-limit case of an F?
X .
. isoelectronic impurity. ]
o "
X
- A particularly useful application of the theory i{s its perturbation- !EH
i' expansion form, in which measured elastic constants are incorporated to

; obtain accurate results. This form is also useful for comparison with other :{j
- 3, 8 ,9 . n
- previously published models that are based on the valence force field e
ﬂ (VFF)10 model alone. Thus, all the factors influencing bond-length '?;
é relaxation, e.g. strains, boundary conditions, and chemical effects, can be :;;
. studied. The ability to incorporate the chemical effects is one major 53
- o
- difference between this theory and other VFF models. iﬁ}
. {k}
» :('J
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] The rest of the paper contains the following sections: Section II (T
describes a theory for calculating impurity substitution energies. Section ad

; III casts the theory into perturbation form and combines it with a valence E;E

) force field and an elastic continuum. Several VFF models are derived in EJ;

’l'l'

Section IV. The modifications of numerical results due to chemical effects
on local bond lengths and alloy mixing enthalpies are summarized and
discussed in Section V. Conclusions are drawn in the last section, Sec-

tion VI.

p II. IMPURITY SUBSTITUTION ENERGY

Consider the problem of substituting an isoelectronic atom A for a B
atom in a zinc-blende compound BC (e.g., In substitutes for Ga in GaAs, as

shown in Figure 1). In general, the bond lengths d d, ... for the (

0 90 93
first-, second-, and third-~shell bonds surrounding the impurity are
different from the equilibrium values of either the pure BC compound,

denoted as d, or the "impurity" compound AC, denoted as d, = d (1-60). If A

I
starts being a free atom, and B alsoc ends being a free atom, then the energy
difference between the final and initial states is defined as the

substitution energy and is given by

. Ay = (Edef*eB)—(Epure*EA)' (1)
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Fig. 1. A sketch of the flatted picture of a single impurity A

in a BC compound. The positions and displacements for

those atoms labeled are used in Appendix B.




O

where € and ¢, are free-atom energies for A and B respectively, Edet‘ is the (

B

total energy of the semiconductor with a defect as sketched in Figure 1, and

Epure is that of the pure host BC crystal, Equation (1) can be written as

A, = (E

s def Bais) (ea7eg ) (B s Epire)

s pure

= dgm(emeg)*hy oo (2)

where we have added and substracted a term Edis’ which is the total energy

of a distorted BC compound with all the atoms held at the positions

specified in Figure 1, except the central atom is a B atom. Clearly, AR =

dis (:

Edis_Epure is the energy required to deform a pure BC crystal from its

equilibrium lattice to that specified in Figure 1. A

E E is a replacement energy, and the distortion energy A

def “dis

R contains all the

chemical terms that arise from different bond lengths and polarities between

AC and BC bonds.

4, can be treated most easily by Harrison's bonding theory.7 In this

R

theory, the energy per bond relative to the vacuum state is

E, = 2c +V_+6c +6¢_
b~ “%p ‘o “tm Ctpm? (3)

where eb is the energy of the bonding state constructed from the two hybrid

orbitals facing each other along the bond direction E:



b
A
et
Bty
] npt
: A, C, ,.2.21/2 t:;‘?‘
< - - . 4 &
s ( By = 172 (gprey)-(Voevg) /%, (4) S
,'n;'-
o~
N
.—('
with chA and ehc being the energies of the anion and cation hybrids orbitals -h;r
r\.«'
respectively. The antibonding energy €, has the same form as in Eq.(4) —
N
except with a plus sign. V, is called the covalent energy, which is the v
total electronic Hamiltonian matrix element between the two hybrids in :ﬁﬂl
C A o
question, and the polar energy V3 is the difference V3 = 1/2 (eh €h ). The !!i
em+ and em-' the metallization energies, are the shifts of the bonding ;;ﬂﬂ
level caused by interactions with the neighboring anti-bonding states, where i;
+ and - indicate whether the common adjacent atom is a cation or anion. For ?;Q
example, this term for an AC bond labeled by d, in Fig. 1 due to an R
antibonding state labeled by d, is given by SSﬁ
':__
ALY
B,A A, 121B,ay 12 (4C12,r A B R
’ - - Ry
em'c(zn) Jug (O Jug @) | |V </Tep (D-e (D], (5) )
- s

where A and B denote AC and BC bonds respectively, V1C

c o
= 1/4 (es -ep ) with

esc and epc being the s- and p- term values of the common adjacent atom C. 8

UbA(l) is the probability amplitude of finding an electron in the hybrid &ii}
orbital of the C atom in the bonding state of an AC bond with a bond length :E;;
d,, whereas UaB(Z) is the corresponding probability amplitude for the :;i;
antibonding state of a BC bond of bond length d2. Finally Vo is a repulsive §§§E
palr potential required to prevent the crystal from collapsing and to ftj

guarantee a correct equilibrium bond length.
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The local perturbation, Eq.(5), is applicable, because the square root (
of the numerator is much smaller than the separation between the anti-
bonding and bonding levels, and the valence band is completely filled, so
the interaction between the bonding states only spreads the € levels into
bands without affecting the center of gravity of the occupied states.

The replacement energy Ay of Eq.(2) can now be written explicitly:
A A A,A B, A
Ap = u[Zeb(1)+vo(1)*6em,A(1,1)+6em’c(2,1)
—».Bryy-yBr1y-¢. BB _¢.B,B
2eb(1) Vo(l) 6€m,B(1’1) 6€m,C(2’1)

+6£2&B(1,2)-6ez’g(1,2)]. (6)

The distortion energy A of Eq.(2) now involves only BC bonds of different

dis
bond lengths. It can be treated with exactly the same procedure for any
given set of bond-length distributions. Thus, a straightforward energy

minimization procedure can be carried out. The accuracy of this procedure,

however, depends in turn on the accuracy of scaling rules for V
7

and V_ and
2 0

the input parameters. At present, Harrison's model’ with V2a 1/d2 and Vo «

1/du and his universal parameters are only semi-quantitative. We are
improving the quantitative nature of the theory so that the full theory will

yleld accurate predictions of the structural and thermal properties of

semiconductor defects and alloys.
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- (f III. PERTURBATION EXPANSION, VALENCE FORCE FIELD, AND ELASTIC MEDIUM g*
- ‘4‘ 3
. o
| &
i: As pointed out earlier, a perturbation expansion of the theory is j}ﬁ
o~ '.: ‘
. instructive. This is feasible because the differences AV2 = V2(AC)-V2(BC) :;2
D\ 1 ]
A\ -

and AV, = V_(AC)-V

3 3 3(BC) are small compared to each individual value for many

“-, l_
- of the isoelectronic impurities in III-IV and II-VI compounds. To this end, :ﬁﬁ
T Eq.(6) is rewritten as :?;
5 A B B,A AA S
- (1788, = E (1) Eb(1)+6[em,c(2.1) em,c(1,1)] -
) ::.:
b Ny
_¢r A,B __B,B A,B _B,B ]
l 6leg"c(2,1)=e " C(1,1)146Ley " ((1,2)-¢ " ((2,2)] o
; :
" .- B,B _ B,B 7y
v (l 6[€m,c(1’2) em'c(2,2)], o
. ¥;
_{-f
A B ~3
where Eb (1) and Eb (1) are energies per bond in Eq.(3) for AC and BC ~
or
. compounds respectively, with the relaxed bond length d1 = d (1-§). The #
Ej difference between these energies Eb and the corresponding values at their
Lj respective equilibrium bond lengths dI and d are just the strain energies
i per bond in uniform deformation: k. |
% 13
3 1]
- EA(1) = EMa)+2/3 B d_(d,-d.)?
F! b b 1 14479 &

APAASY
O

o T T
’

B B 2
E (1) = E_(d)+2 /3 Bd(d,-d)%, (8)
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crystals. The rest of the terms in Eq.(7) are all due to changes in e

where B. and B are the bulk moduli for the "impurity" AC and host BC (

m

caused by the differences AV3 and sz. We shall use Harrison's scaling

rules to deduce them.7 Expanding Eq.(7) to second order in AV3 and Ad =
dz-d‘, we write
B,A __A,A - _ 2
6[€m,c(2'1) Em,c("')] fad-g; AV3+hI(Ad)
W AV +U_ (V)2 (9)
I 371 37

where fI’ gI, and so on, are appropriate derivatives evaluated for the
"impurity" crystal AC. When similar expansions are made for the rest of the

terms in EQ.(7), it becomes [with d, = d(1-6§), d; = d(1-60)] (
. 2
(1/U)AR = AEb+(fI-f)Ad‘(SI'E)AV3+(hI+h)(A?)

- + 2
(W +W) AdAV3+(UI+U)(AV3)

3 . 2 3.2
+2/§Bld (8 50) 2/3 Bd”s°, (10)

where

A B, .\_ _
AE, = Eb(dI)-Eb(d) (1/74)(ey-ep)
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is just the difference in the binding energy per bond between the "BC" and
"AC" crystals. In Eq.(10), the coefficients f, g, without a subscript are
those for the host BC system. It is convenient to define an excess energy
AE = AS/M-AEb, which is the extra energy per bond required for the impurity
substitution over and above the binding energy difference between the BC and
AC crystals. The binding energy difference accounts for much of the
substitution energy; however, the correction measured by the excess energy
can be significant. The excess energy results from strain energies and
chemically driven charge redistributions around the defect. Using Egs.(2)
and (10) and defining F = fI-f and G = g;~8, we can write AE up to second

order in Av3and Ad as

AE = 2/3 BId3(c~50)2-2f3' Bd362+FAd-GAV3

+H(Ad)2+WAdAV +U(av

2
3 3) +(1/N)Adis.

where H = h_ + h, W = w

1 + w, and U = u_. + u.

I I

To treat the distortion energy A we divide the crystal into two

dis’
regions. Inside a sphere of some radius R measured from the impurity, the

strain energy is taken to be the valence force field10value:

. . 2
. 2 Bij'[A(Ei IHme,

.

10

(12)

(13)
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where i sums over all the bonds inside R, and the pairs in the g-terms
include those that have adjacent atoms inside R and on the boundary. The

parameters aq and B are force constants to be considered later. A(aoaj) =

Eiaj-ai“’)-a.w) measures the change of the dot product between bond vectors

due to distortions. Outside R, we assume an elastic continuum with radial {!; y
displacements inversely proportional to the square of the distance from the :;‘:1::
center. The elastic energy in this medium can be shown to be (see -

Appendix A) ;‘.

M]’ and u ( ﬁ.

is the displacement at R. In view of the fact that the bonds d1 and d2 are e

coupled through the chemical terms in Eq.(10), the smallest logical radius R e

where the effective shear coefficient is C = Mn[O.N(CH-CIZ)H.Z C

is the second-shell atomic distance, namely R = 2/2d/V/3. Atoms on this
boundary have displacements of the forms b = d(v,v,0)/v3, ... Thus, u = v2 '_'_'.-_'_.-
Y d//3 and the elastic energy in the continuum is 50y
(out) _ 4 [Z 2,3 1sy oo
Bais =3V 3 o
I'C‘.I'-
The distortion energy represented by Eq.(14) contains six different ION
contributions (see Appendix B): the bond-stretching energy of the four —_
t- « Ty
first-shell bonds, 6a62d2, the B-terms from the first-shell bonds, 862d2. -’u}'

11
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the a-terms from the second-shell bonds, 2a(6+2Y)2d , the B-terms between

the first-and second-shell bonds, 28(6+Y)2d2, the B-terms among the second-
shell bonds 2862d2, and finally the B-terms between the second-shell bonds
and those in the continuum, (1/2)Bd2[(36+A1Y)+(6+AZY)2], where A, =

1
40 v27(19 V13) and A, = 2-40 Y2/(11 /11).

To assemble all the contributions to Eq.(12), we need to consider the
assignments of the elastic constants and the force constants o and g8 in
VFF. While the experimental values11 of C11, C12, and C‘“4 can be used for
the elastic constants, a and 8 have to be deduced. If Martin's original
procedur'e10 (also followed by Martins and Zunger3) is used, then Eq.(13)
alone will not produce the correct (experimental) bulk moduli. There are
small corrections due to Madelung terms, which are hard to treat in the case
of non-uniform distortions. A simpler procedure is adopted here. We use
the experimental bulk moduli for BI and B in Eq.(12) and experimental
elastic constants to calculate‘C of Eq.(14), and then force ¢ and B8 in the
VFF to produce the correct bulk moduli B and shear coefficients C11-C12.
Such an approach is also consistent with Harrison's bonding theor‘y7 and
other approaches in which the Coulomb forces are automatically incorporated
in the band and bond energies, and do not need to be redundantly treated.
With our procedure, the bulk modulus is simply related to the force
constants by B = (3a + B)/(43d). Table 1 lists our ¢ and g values. We
want to point out in advance, however, that the numerical results deduced
from our and Martin's sets of a and B do not introduce differences more

than the present experimental uncertainties in the local bond length

(~ 0.014) and the mixing enthalpies (> 0.5 kcal/mole),
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Table 1.

The bond lengths d (in A, valence force constants aand 8 (in N/m),
shear coefficients C of the continuum (in 1011l erg/cm3),
melting temperatures T, (K), and Liedermann ratios X, for the
compounds used in this paper.

Compound d a 8 C
AlpP 2.367 44.323 8.068 122.396
AlAs 2.451 40.849 8.717 112.695
AlSb 2.656 34.073 6.900 85.351
GaP 2.360 44.764- 10.737 145.921
GaAs 2.448 39.235 9.159 121.844
GasSb 2.640 31.876 7.347 89.372
InP 2.541 40.363 6.543 91.785
InAs 2.622 33.203 5.752 78.816
InSb 2.805 28.557 4.891 60.721
.ZnS 2.342 40.429 5.273  89.272
ZnSe 2.454 32,200 4.562 82.687
ZnTe 2.637 29.445 4.659 62.430
CdTe 2.806 26.569 2.722  38.453
HgTe 2.798 26.396 2.746  40.363

*Ref. 30
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T
1773
1873
1323
1510
1738

985
1343
1215

798
2123
1788
1511
1371

943

0.070
0.073
0.062
0.064
0.071
0.055
0.059
0.061
0.049
0.081
0.080
0.071
0.067
0.056




( Using the above procedure and adding all contributions, the excess e
energy per bond from Eqs.(10) and (12) is the full perturbation theory (FPT) -

result 3::'."

2 2 2
i BE = [3a,(8-§.)/2+8(8-8 ) /2+a(6+2Y)/2

+8(6+Y)2/2+862/H+B(36+x1Y)2/8+B(6+A2Y)2/H]d2 e

+ /2 cv2d3/(3/§)+AEch, (16) X

where the chemical contribution is written as

AEp = FopAd+H(Ad)T+AE “¥]

BOA

.".."-qu

2 y 2.2 2 (17) 5

= = F  (26+Y)d+= H(26+ d-+(Uav, - T

3 ch( §+Y) 3 (26+Y) (Ua 3 GAV3), >

2 . . R

where AFch F WAV3 and AEp = UAV3 GAV3. Fch is a chemical force, which, ‘:.
when it is positive, tends to push the C atom away from the impurity atom A.
This force arises from the difference in the bond tensions induced between
the AC and BC bonds adjacent to C because the neighboring anti-binding :i:;'f;
states are different from those of their respective host states. AE_is due

to the difference in the polarities AV3 alone and is independent of the N

displacement. Finally H can be regarded as a chemically induced force

S




v
constant which, when it is positive, tends to restrain the lattice from (

distortion and increases the elastic energy.

.. r‘l'lﬂ! ."\J:".

»

.
a8y 3y TNy

The equilibrium requirements, 3(AE)/38 = O and 3(AE)/3Y = 0, then lead

2

to the solution Y = Q§, and § is given by

. }‘ff.l .

."““.r' o 2, 55

.
P

§= (6+6‘;) /{1+[a(1-20)+8(17/’4-AQ)+16H(1—2Q)/9]/(3aI+BI)}. (18)

“a
1)

,. ol e
PRI

where the constant ) is 1+3A1/H+A2/2, and 1

61 = -MF_ (1-Q0/2)/[3d(3a;+8 )], an (g

with Q = 2J/K, J = o+Ag/2+8H/9, and K S

- Na+2/?Cd/(3/§)+(1+A$/H+A§/2)B+8H/9.

IV. VALENCE FORCE FIELD MODELS o

In this section we consider several models based on the valence force ot

i)

field (VFF). These models have been used frequently to explain the impurity E S
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v
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bond relaxation We shall first derive the explicit expressions for

these models and then connect them with the existing results.

Model A: Third-Shell Atoms and Beyond Are Fixed at Their Pure Crystal

Positions

Let the bond lengths surrounding the impurity again be d1 = d(1-§)
and let the second-shell atoms have radial displacements of the forms (d/v3)
(v,Y,0) ete. Beyond and including the third-shell, all the other atoms are
held at their pure-crystal positions. There are nine different contribu-
butions to the strain energy in VFF (see Appendix B): the a-terms from the
four bonds surrounding the impurity: 6aI(6-60)2d2, the g-terms among the six
pairs of these bonds, 81(6-60)2d2, the g-terms between the first-shell and

second-shell bonds, 28(6+Y)2d2, the a-terms from the second-shell bonds,

2a(6+2Y)2d2. the g-terms among the second-shell bonds, 2 B 62d2. the g-terms

between the second-shell and third-shell bonds: (9/2)862d2 + B(6+ZY)2d2, the

a-terms from the third-shell bonds, 8aY2d2, the B-terms among the third-

shell bonds, HBYZdz, and the g-terms between the third and fourth-shell

bonds 6872d2. Thus, the excess energy (in this case 1/4 times the strain

energy) becomes

2 2

- 30 (s- Yo (5-5 )%l
BE = [Za (86 )%%,8, (676 )+58(6+Y)

+3 a(s+21)% -‘-g Bs%+ g8(s+2Y)?

+2av?+28v%10°.
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The minimization of AE w.r.t § and Y leads Eq.(20) to vy = -§/4, and

5 = 8, /[1+(a*178/2)/ (6a 8], b

We note that there is some ambiguity in the third contribution listed
above for the B-terms between the impurity and host bonds. The value of 8
could be chosen as one of these combinations B,BI, 1/2 (8+BI), /seI or other
proper combinations. Because the values of g and BI are comparable and B
values are much smaIler than a (see Table 1), the results for § and AE are

not too sensitive to the choice. There is also some ambiguity in the values
0)+ (0)
+°d

J

>

for d for the "undistorted" crystal. The -d2/3 used is the

(
i
simplest choice. A different choice will not affect the results for § at

all, but will make AE slightly different. In fact, Model A was firstly used

by Martins and Zunger.3

However, their expression for § is different from
Eq.(21), because they made different choices of the two quantities just
mentioned. Nevertheless, Section IV will show that these two expressions
yield very similar results. These ambiguities do not occur in the full

theory in Section III, where the impurity-host interactions are taken into

account naturally by the replacement energy AR [see Eq.(10)].

Model B: Second-Shell Atoms Connect to a Fixed Boundary

This model corresponds to Y = 0 in Model A, So we have

- (3 -6 )%
BE = [5 a (8- ) +8, 3 2

17

ey
"I’ J

s
e " \.1

o
' *

£ >y e -.-{
. a-a o & 8 B g ®
’ n'l"..l..‘\ TR

Ra) O

1 — B
(6*60)2*—0162*1—9- Bs°1d°, e e




]
e o)
U Y

d

¢ £
AL

-
~
¥ A

A

At .

and

A 4 A
RN

RS

\
s Yy

&

6 = 6 /[1+(a*198/4)/ (3u 3 8. (23)

L.

T
3

0\

. “'

This expression will be used to study the effect of truncation.
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Model C: Simple Spring Model -

If all the B8's in Egs.(22) and (23) are set equal to zero, we have the

simple spring model with
- 3 2.1 2. .2 . “
4 = [2 - - S
’ AE [2 aI(G 60) *5 as"]d (24) :

and A

§ = 50/(1+% a/ay). (25) o
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The spring model recently 8 discussed by Shih et al. corresponds to

Eq.(25) with q = ar, SO 6/6o = 3/4,

Model D. VFF With the Continuum Connected to ti.» Second-Shell Atoms

Model DI

In this case, AE only contains the first five contributions listed for
Case A plus the elastic energy in the continuum. However, the g-terms
between the second- and third-shell bonds are modified because atoms outside
R in the continuum now have radial displacements proportional to the inverse

of the square of the radius. The result is

1

3 5 )2 s 12,1 2,1 2
AE = [Sa (66 )" +gB8,(8-6 ) +5a(8+2Y) +38(5+Y)

1 .2 1 2.1 2.V7 2,2
+586 ¢ 58(36+A 1wr) +'EB(6+X2Y) +37§CdY ]a°,

where A, and AZ are the same as the constants that appear in Eq.(16). The

corresponding equilibrium condition can be shown to be

5 = 60/{1+[a(1-2Q)+198/”‘B(1+3A1/U+A2/“)Q]/(3aI*BI/2).
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where :;;
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1.2,.1.2 28) i

Q = (20+B+3 B/4+A;8/2)/ (Ha+2/2CA/3/3+8ry) B3h8) (28) ug

o

X
“ ™
Model D2 R

A comparison between Eq.(26) and the full perturbation (FPT) theory L
Eq.(16) shows two major differences. First, all the chemical terms are };;
absent in Eq.(26). Secondly, the terms (1/2)81(6-60)2d2+(1/h)3 62d2 in i{,
Eq.(16) become (1/4) B; (& -60)2d2+(1/2) 8 6°d” in Eq.(26). This difference -
in the strain energy will mask the true effects of chemical forces if § from ;?f
Eq.(26) is compared with FPT. A better way to study the chemical effects is ié;
to use the following equation: f;]
3

3 21, 21 2.1 2
AE = [Sa;(6-6)"+58,(8-6 ) +5 a(8+2Y) +58(8+Y) :}-*-,
|~:‘\
Y
+86 54383642, 1) 238 (642 1) 10 ; \
/3 2.3 (29 .::
373 C , )

3 3 Y .:.:.
]

which is Eq.(16) with all the chemical terms neglected. The corresponding § Lff
becomes :;t
=
17 3. .1 R

§ = 60/{1*[0(1‘2Q)+u—8‘8(1*-u-)‘1*iXZ)Q]/GaI"’BI)}, (30) <)

with Q still given by Eq.(28).
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Model E: Continuum Connected to the First-Shell Atoms

N

o’

.

In this case Y = -3 ¥/3 §/(8/2) and AE only includes the first three

v
‘e

" .'.: e

contributions listed in Model A plus the strain energy of the continuum:

e

'. ’fl "'4

r
.

'™

-r3 s 12,0 e y2 1., 3/3.2.2 -4

BE = [Sa;(8-6 ) +7B.(8-6 ) "+58(1-575)"Y L

\:

\.:_'.

1 2..2 :;k

+ Cds“1a”. 31 i

o

W

A

(: o

The relaxation parameter is given by o
5 = 8,/11+15 Car(1-272)281/ (30,408 ) i

o 2 2 (!I 2 I . (32) N ‘~._

We note that the continuum model used to estimate the bond-length relaxation :liA
by Baldereschi and Hot‘field9 corresponds to Eq.(32) without the g terms, B
which yields 6/60 = 0.4 to 0.5, rather than the proper values around 0.7 to f;f
0.8. ~:
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V. ALLOY MIXING ENTHALPY

The impurity substitution excess energies AE provide a first estimate
of the mixing enthalpies of pseudo-binary alloys. Most current
thermodynamics theories of semiconductor alloys are based on an extension of
the binary solution mode11.2 In this model, the mixing Helmholtz energy of

an AxB1_xC alloy is defined as

AF_ = F (33)

m alloy-(XF

actYFpc)

where y = 1-x, and FAC and FBC are the respective free energies of the pure

AC and BC compounds at the same temperature. Because the C atoms occupy a
sublattice, the nearest neighbors of A and B atoms in the alloy are the C
atoms. Thus the pair potentials that enter the binary solution theory are

now the second-neighbor interactions. Let N N B’ and N

AA' A B

the numbers of the second-neighbor AA, AB, and BB pairs, with corresponding

B be respectively

AA’ EAB' and €gp " For tetrahedral

semiconductors, there are a total of 6N second-neighbor pairs for a crystal

pair interaction energies, ¢

containing N unit cells. Denote the ratios N N and N B to 6N as r

AA’ TAB’ B AN’
rag = T and reg respectively. Then those ratios are related to the alloy
composition by PAA = x-r/2 and PBB = y-r/2. The mixing free energy has two
terms

AFm = AEm'TAS, s
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AE = E

m alloy-(xs

= 6N(¢e

= 6Nrae,

where

mixing enthalpy AHm.

and

As(A

where the mixing energy is given by

act¥Egc

AA"AA*€AB"AB BB BB

1
Ae = EAB 3

impurity substitution energies by

AS(A in BC)

e e e e e e e e e e e e e T e e e e e e
Shiat ot az ol ath oo . e aglany ooty e e s

........

( ).

€aa"%BB

12(¢ ),

AB ©BB

12 (e ).

AB €AA
23

)-6N(xeAA+YEBB

)

The mixing entropy AS can also be written from a simple generalization of

the random distribution.12 For modest pressure, AE is the same as the

Now the pair interaction energies can be approximately related to the
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Thus Ae of Eq.(36) becomes
1 .
Ae = EH[AS(A in BC)+AS(B in AC)]

- % [AE(A in BC)+AE(B in AC)]J. (39)

Usually, the experimental AHm is written as

BH = x{1-x)Q, (40)

which i3 equivalent to assuming a random distribution, i.e. r = 2x(1-x) .
Using this expression for r and comparing Eq.(40) and (35), we see that the

mixing enthalpy parameter @ is given by

Q = 2[AE(A in BC) + AE(B in AC)]. (41)

This connection provides a further check of the theory.
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! VI. NUMERICAL RESULTS AND DISCUSSION =
y -~
; €]
! o
h 3
> A. Chemical Terms I
i. \*
K_
N oY
Table 2 lists 60 = l—dI/d, § = 1—d1/d, the excess energy (per ey
bond) AE for the full theory and its corresponding VFF Model D2, anc the ;
terms derived from the metallization energies: 65 (Eq.(19), FCh’ H, AEp, !&»
., \':'.
= and AE;, (Eq.(17)]. The appropriate derivatives f, g, h, ..., [see :{j
-; Eq.(9)] are computed using the atomic term values that we have generated P
¥ form impurity-level13 and structural studies.5 :i;
~ &
\* ’_‘w.":
- };\.‘
> _-’;'j-
- For substitutions involving the cation pair (Ga, Al), FCh has the same oo
- E
. i
g sign as 60, which means that FCh prevents relaxation and thus tends to (i -
- increase the strain energy. The chemical forces H are also significant. As ::;
f a result, all six cases involving this pair have nearly equal d1 and d2, ;f
i.e. the small bond length differences are made even smaller in the alloy. ;7;
‘: The excess energies all become negative, mainly because AE_ is negative. Cf:
Y For the systems involving the (Ga, In) and (In, Al) pairs, FCh has the }i
2 opposite sign from 60, so 66 and 60 have the same sign. The chemical force i:;
y favors bond distortion. However, because H is positive and it introduces an vif‘
. increase in the denominator of Eq.(18), most of the effect of dé is L
3 cancelled. For cases involving (Ga, In), the polarity contributions AEp are ‘igé
X all negative. The FChAd term is negative, but HAd2 is positive, so they ;}:
A cancel to a certain degree and leave AE lowered primarily because of AEp. }}
- RS
While, AEp is still negative for the (In,Al) substitutions, its magnitude is 'gi‘
- reduced considerably. The other chemical energies FChAd + HAd2 can be as !E; If:
b Sl
o 25 SR




Table 2. Comparison between the full theory and the corresponding VFF Model D2
to study the effects of chemical terms. All AE's are in units of
kcal/mol-band.

Model D2 Full Theory
) Host 8q. 8 AE 8p' 8 Fop (10710N)  H(N/m) AEp  _AE., AE

1 AlLP 0.003 0.002 0.001 -0.001 0.001 0.150 4,581 -0.016 -0.016 -0.013

1 GaP -0.003 -0.002 0.001 0.001 -~0.001 -0.150 4.581 -0.016 -0.016 -0.013

:a Alas  0.001 0.001 0.000 -0.002 -0.001 0.243 5.733 -0.020 -0.021 -0.018

Al  GaAs -0.001 -0.001 0.000 0.002 0.001 -0.243 5.733 -0.020 -0.021 -0.018

Ga AlSb 0.006 0.004 0.005 -0.004 0.001 . 0.389 5.632 -0.054 -0.053 -0.039

Al  GaSb -0.006 -0.004 0.005 0.004 -0.001 -0.389 5.632 -0.054 -0.053 -0.039

In GAP -0.077 -0.052 0.959 -0.006 ~0.054 0.699 3.778 -0.188 -0.219 0.742

Ga InP 0.071 0.056 0.734 0.005 0.057 -0.699 3.778 -0.188 -0.206 0.530

In GaAs -0.071 -0.048 0.752 -~0.009 ~-0.050 0.804 4.778 -0.257 -0.283 0.472

Ga InAs 0.066 0.052 0.592 0.007 0.054 -0.804 4.778 -0.257 =-0.265 0.330

In GaSb -0.062 -0.043 0.554 =0.004 -0.042 0.352 5.201 -0.363 -0.308 0.247

Ga InSb 0.059 0.046 0.445 0.004 0.044 -0.352 5.201 -0.363 -0.287 0.160

In AlP -0.074 -0.053 0.761 -0.007 -0.056 0.769 3.506 -0.035 -0.087 0.679

Al InP 0.068 0.053 0.674 0.006 0.056 ~0.769 3.506 =-0.035 -0.083 0.596

In AlAs -0.070 -0.048 0.705 -0.010 -0.051 0.942 4.437 -0.048 -0.111 0.602

Al InAs 0.065 0.052 0.576 0.008 0.054 ~-0.942 4.437 -0.048 -0.099 0.485

In AlSb -0.056 -0.039 0.440 -0.008 -0.041 0.689 4.979 -0.061 -0.073 0.369

Al  InSb 0.053 0.042 0.368 0.007 0.044 ~0.689 4.979 -0.061 -0.061 0.310

Cd ZnTe -0.064 -0.048 0.432 -0.003 -0.050 0.202 -0.484 -0.005 -0.064 0.373

Zn CdTe 0.060 0.050 0.314 0.002 -0.053 -0.202 -0.484 -0.005 -0.072 0.247

Hg CdTe 0.003 0.002 0.001 0.004 0.005 -0.278 -0.753 -0.018 -~0.026 ~0.018

¢d HgTe -0.003 -0.002 0.001 -0.004 =-0.005 0.278 -0.753 -0.018 -0.026 -0.018

Hg ZnTe -0.061 -0.045 0.392. -0.001 0.046 0.075 0.002° 0.052 0.037 0.429

Zn  HgTe 0.058 0.048 0.286 0.001 0.049 -0.075 0.002 0.052 0.035 0.322

As AP  -0.03 -0.026 0.179 0.001 -0.025 -0.085 0.717 -~0.005 0.008 0.187

P AlAs 0.034 0.025 0.185 -0.001 0.025 0.085 0.717 -0.005 0.008 0.194

As GAP -0.037 -0.025 0.226 0.002 -0.024 -0.181 1.078 =-0.011 0.012 0.240

P GaAs 0.036 0.027 0.211 -0.001 0.025 0.181 1.078 -0.011 0.014 0.228

As InP -0.032 -0.023 0.136 0.001 -0.022 -0.057 0.919 ~0.003 0.008 0.144

P InAs 0.031 0.024 0.128 -0.001 0.024 0.057 0.919 -0.003 0.009 0.138

Sb AlAs -0.084 -0.058 1.024 0.008 -0.051 -0.815 0.644 ~0.180 0.002 1.060

As AlSb  0.077 0.059 0.919 -0.007 0.053 0.815 0.644 -0.180 0.027 0.984

Sb GaAs ~0.078 -0.052 0.908 0.018 =0.040 -1.599 0.927 -0.363 -0.106 0.929

As GaSb 0.073 0.055 0.823 -0.014 0.044 1.599 0.927 -0.363 -0.061 0.904

Sb  InAs -0.070 -0.051 0.603 0.010 -0.042 -0.824 0.855 0.171 -0.009 0.645

As InSs 0.065 0.051 0.551 -0.009 0.044 0.824 0.855 -0.171 0.008 0.613

Sb AlP -2.122 -0.085 2.007 0.010 -~0.077 -0.944 0.645 0.241 0.074  2.127

- P AlSb 0.109 0.085 1.855 -0.008 0.078 0.944 0.645 -0.241 0.123 2.030

. Sb  GAP -0.119 -0.075 2.132 0.021 -~0.061 -1.868 0.930 -0.505 -0.046 2.244

) P Gasb 0.106 0.083 1.806 -0.015 0.070 1.868 0.930 -0.505 0.093 2.084

3 Sb InP -0.104 -0.072 1.383 0.011 -0.063 -0.922 0.854 =0.214 0.059 1.501

- P InSb  0.094 0.077 1.191 -0.008 0.069 0.922 0.854 -0.214 0.123 1.379

- Se zZnS -0.048 -0.036 0.231 -0.001 -0.036 0.077 0.645 0.003 0,000 0.231

5 S ZnSe 0.046 0.037 0.221 0.001 0.037 -0.077 0.645 0.003 0.001 0.222

.‘ Te ZnSe -0.075 =-0.056 0.550 0.000 -0.056 0.028 0.635 0.008 0.024 0.574
—. Se ZnTe 0.069 0.054 0.532 0.000 0.054 -0.028 0.635 0.008 0.025 0.557 .
& ( Te 2zns -0.126 -0.092 1.565 =0.001 ~0.092 0.101 0.644 7 022 0.041 1.606 ¥
: S ZnTe 0.112 0.091 1.446 0.001 0.091 -0.101 0.644 0.022  0.051 1.496 -
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large as AEp. But the overall reductions of AE are only a fraction of those

for the (Ga, In) cases. For the several II-VI systems studied, both F d

Ch an

H are small, and the net changes in § have the same sign as 60. However,

because 60 is small in the (Cd, Hg) substitutions, F actually causes a

Ch
reversal in which the short bond length gets shorter and the longer one gets
longer. This is the only exceptional case of this type found for all the

systems studied. The change of AE due to chemical terms in the (Hg, Zn)

substitution is also peculiar--it increases mainly because AEp is positive.

Next examine the anion substitutions. For the groups involving the (P,
As) pair, the chemical shifts are all small, but the trend is less toward
relaxation and larger AE. The groups involving (As, Sb) and (P, Sb) pairs

behave very similarly: FCh are significant and are opposing relaxations,

i.e. 66 and 60 have opposite signs. At the same time, the H values are
several times smaller than those for the corresponding III-V cation
substitution case. Thus, most éf 66 translates into a real reduction of
the ratio 6/60, and consequently introduces extra strain energy. Although

the AEp energies are significant and negative, F. Ad are positive, and the

Ch

net AE can be either positive or negative. However, the induced strain

Ch

energy due to reduction of the 6/60 makes all AE positive for these two
groups of systems. For II-VI systems, all the chemical effects again are

small, but the net chemical changes on AE are slightly positive.

The above discussion can be summarized in Figure 2, where the excess

energies AE calculated from the full perturbation theory (FPT) and Model D2

are plotted normalized to the results of the simple spring model (SSHS)B,of

= a , SO AE/(3/8 ad2) = 602. The calculated

Shih et al., {.e. Eq.(24) with a;
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Fig. 2. The excess energies AE over 3/8 ad? calculated from the
full perturbation theory and its corresponding VFF
Model D2. The solid curve corresponds to Eq. (24) q

with a = ap.
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2
AE rises faster for 60 2 o than for 605 o, mainly because u./aI = 1. In fact ( "r
if the relation7’1oa/aI = (dI/d)S with S of order of 3 to 5 is used in ~{J;
Eq.(2l4), we obtain a percentage correction of sao/u to the SSHS results, €§§
which explains the skewed behavior of the curve. It is also clear that AE é;i;
rises faster than 502 for larger 50. However, the zeroth order theory of Qﬁév
SSHS is clearly an excellent representation of the global features of AE. i:;i
The results from Model D2 are closer to the parobolic form than those from 5%;?
FPT. The figure clearly shows the general trends; the chemical terms cause !!%;
negative shifts in AE for cation substitutions and positive shifts for anion ;ij-
impurities. It is also clear that the chemical shifts can be very large. ;;-
These effects will have important consequences on the alloy mixing ffi?
enthalpies to be discussed later. .

‘1 -

B. Impurity Bond Length

Table 3 lists the impurity bond lengths d1 calculated from

different models, while a comparison of theory and the available
1,14,15

experimental data is presented in Table 4. The actual size of

changes in d, induced by the chemical terms can be seen by comparing Model é;ﬁ

1
D2 with the full theory. Except for the systems involving the substitution

of (Ga,As) and (P,Sb) pairs (where changes range from 0.01 to 0.034), all if{{
3 ALy

the chemically induced changes are less than 0.01 A. Comparison among ‘j:£L
R

Models A, B, and C shows that, while extending the boundary helps the E:i;
relaxation (compare Model B to A), i.e. 6/6° is closer to 1, the inclusion Eigs

of the bond-bending forces (the g terms) (compare Model B with C) prevents

it. The simple spring model (Model C) which contains neither of these E: };iij
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Table 3. Calculated impurity local bond lengths (in A) from the full theory
and several valence force models discussed in Section III and
their comparison with the values calculated by Martins and
Zunger (Ref. 3)

A B C D1 D2 E FPT MZ

Ga AP 2.362 2.363 2.362 2.362 2.362 2.364 2.364
Al GaP 2.365 2.364 2.365 2.365 2.365 2.365 2.363
Ga AlAs 2.449 2.449 2.449 2.449 2.449 2.450 2.452 R
Al GaAs 2.450 2.450 2.450 2.450 2.450 2.450 2.447 S
Ga A1Sb 2.645 2.646 2.644 2.645 2.644 2,649 2.653 o
Al  GaSb 2.651 2.650 2.652 2.652 2.652 2.650 2.644

In GAP  2.477 2.462 2.492 2.479 2.483 2.435 2.487 2.474
Ga InP 2.406 2.421 2.402 2,395 2.399 2.409 2.396 2.409
In GaAs 2.559 2.544 2.573 2,561 2.565 2.518 2.570 2.556
Ga ImAs 2.492 2.506 2.486 2,482 2.485 2.496 2.481 2.495
In GaSb 2.747 2.734 2.760 2.749 2.754 2.710 2.750 2.739
Ga InSb 2.683 2.697 2.678 2.673 2.676 2.686 2.680 2.683
In AlP  2.487 2.472 2.494 2.490 2.493 2.447 2.498 2.480
Al  InP 2.412 2.427 2.408 2,401 2.405 2.415 2.400 2.414
In AlAs 2,561 2.546 2,572 2.563 2.568 2.523 2.575 2.553
Al ImAs 2.493 2.506 2.487 2.483 2.487 2.497 2.480 2.495
In AlSb 2.754 2.741 2.763 2,756 2.760 2.721 2.765 2.746
Al InSb 2.693 2.705 2.689 2.685 2.687 2.696 2.683 2.693
Cd ZnTe 2.756 2.740 2.760 2.760 2.763 2.720 2.770 2.755
Zn CdTe 2.673 2.688 2.676 2,660 2.665 2.671 2.658 2.674
Hg CdTe 2.800 2.801 2.800 2.800 2.799 2.801 2.790

Cd HgTe 2.804 2.803 2.804 2.805 2.805 2.804 2.813

Hg ZnTe 2.750 2.735 2.754 2,753 2.757 2.715 2.758 2.748
Zn HgTe 2.671 2.685 2.674 2.659 2.664 2.671 2.662 2.673
As  AlIP  2.425 2.418 2.429 2.427 2.428 2,406 2.427 2.422
P AlAs 2.392 2.399 2.387 2.387 2.389 2.394 2.390 2.395
As  GAP  2.417 2.409 2.424 2.417 2.420 2.396 2.416 2.414
P GaAs 2.386 2.393 2.380 2.382 2.383 2.389 2.386 2.387
As InP 2,596 2.589 2.599 2.598 2.600 2.579 2.598 2.595
P InAs 2.561 2.568 2.558 2.557 2.558 2.563 2.560 2.562
Sb AlAs 2.584 2.566 2.597 2.587 2.592 2.539 2.577 2.574
As  Al1Sb 2.506 2.522 2.496 2.495 2.498 2.511 2.514 2.510
Sb GaAs 2.569 2.553 2.584 2.571 2.576 2.524 2.546 2.564
As GaSb 2.501 2.516 2.489 2.492 2.495 2.508 2.525 2.505
Sb InAs 2.747 2.730 2.754 2.750 2.754 2.705 2.733 2.739
As InSb 2.669 2.683 2.663 2.658 2.662 2.672 2.683 2.667
Sb AlP 2.555 2.529 2.569 2.561 2.568 2.488 2.550 2.542
P AlSb 2.440 2.462 2.426 2.425 2.430 2.447 2.448 2.444
Sb GAP  2.526 2.503 2.551 2.529 2.537 2.461 2.504 2.519
P GaSb 2.431 2.451 2.414 2,418 2.422 2.440 2.454 2.436
Sb InP 2.712 2.687 2.720 2,719 2.725 2.654 2.702 2.700
P InSb 2.599 2.619 2.591 2.585 2.590 2.604 2.611 2,597 =
Se ZnS  2.420 2.409 2.421 2,424 2.426 2.396 2.426 2.420 o

Frat

:'l'n.'A
NN
a'a a2

* 4
L]

2
.

)

3

¢

"g l'a N

S ZnSe 2.367 2.376 2.365 2.360 2.364 2.370 2.363 2.367 -
Te ZnSe 2.586 2.569 2.588 2.589 2.592 2.540 2.591 2.584 N
Se ZnTe 2.501 2.517 2.497 2.490 2.494 2.504 2.495 2.502 )
Te 2ZnS  2.543 2.513 2.544 2.552 2.558 2.478 2.557 2.539 N
S ZnTe 2.406 2.429 2.400 2.390 2.396 2.410 2.396 2.407 2
VY d
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terms, evidently represents a delicate cancellation of these effects and
predicts results close to those of the full perturbation theory and
experiment. Although the d1 values of Model C are often very close to those
of Model A, there are cases [e.g., Ga(P, Sb)] in which Model C can differ
from Model A by 0.025 A. Model A produces about the same d1 values as Model
D1, where the maximum difference in d1 is only 0.015 A. Martins and Zunger3
used the same model as Model A, however, their analytic expression for § is
different from that given by Eq.(21). Nevertheless numerical results
indicate these two calculations agree to 0.01 A, The slightly different
forms of strain energies used in Model D2 and D1 only introduce a small

change in d, with the largest difference being less than 0.01 A. The first-

1
shell continuum model (Model E) allows too little relaxation, so while the
other models produce a ratio 6/6o ranging from 0.6 to 0.8, Model E only
ranges from 0.4 to 0.6. The reason that the fixed boundary in Model A works
is that the effective shear coefficient C (see Table 1) characterizing the
strain energy in the elastic coﬁtinuum is large. However, Model 3 is too

rigid, and does not provide enough buffer between the impurity bond and the

fixed boundary.

The comparison of the theoretical results with the available
experimental data in Table 4 indicates that Models B and E are the least
accurate. Models A, D1, MZ and the full theory are comparable in that all
have an average absolute deviation of 0.012 : which is about the
experimental uncertainty in EXAFS. The agreement between theory and
experiment, however, is not uniform. The most surprising result in Table 4
is that the simple spring model, Model C, and its cruder version used by

Shih et al.8 (a = a, soO 6/50 = 0.75, labeled as SSHS) has the smallest

I
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variance in d1, about 0.006 A. We know this does not imply that the simple (

h Y

spring model represents the real picture of bond-length relaxation. Nature

lal;

is just playing tricks on us again. For example, if we let all the shear .

coefficients be zero, i.e., § = C = O in our model, then as the range of the

boundary is gradually extended, the local bond length will eventually relax

to the impurity bond length d1 = dI’ or § = 60. This can be seen in Model A :;f
from Eq. (21), where § reduces to 60/(1+a/6a1), rather than 60/(1+a/3a1) as ;Ez
predicted by Model C, and in Model D from Eqs.(27) and (30), & becomes 60, ;'N
. if the continuum is taken to be shearless. Considering that various effects t3:-

are included that may mask the absolute accuracy of d1 predictions (e.g. {:u

while low-temperature bond lengths are used in the calculation, the room-

temperature values of elastic constants are adopted), the agreement of

various models with experiments in Table 4 should be regarded as excellent.

There are, however, many other impurity systems in which the simple spring

model predictions differ considerably from other models, as is shown in

Figure 3, where § is plotted against 60 for the full theory. Those points

that deviate significantly from the 0.75-slope line are the systems with

(As, Sb) or (P, Sb) substitutions. Additional EXFAS measurements on these

systems are needed to test these predictions.

C. Mixing Enthalpies -2

Table 5 lists the mixing enthalpy parameters Q@ (in kcal/mole) for

a number of alloys estimated from Eq.(41) for all the models considered f:ﬁ
along with other t:heor‘el:ical:*}"6 18 and experimental values.19 As already ;{i,
¥

discussed, the chemical terms reduce the excess energies in the cation (—- e

LY
by
N
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Fig. 3. Calculated bond relaxation parameter § from FPT

and D2 as a function of 60.

The § = 3/4 &, curve

corresponds to theory of SSHS (Ref. 8).
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Table 5. Mixing enthalpyv parameter D (in kcal/mole) estimated from the full ' rtu
perturbation theory (FPT) and several valence force models discussed f}ﬂ
in Section III and comparison with experiments and other theories. E
g
3
A B c il D2 E FPT  Mz3 DLP FMC wwd Exp® A
L%
(Ga,Al)P 0.00 0.01 0.00 0.01 0.01 0.01 -0.05 Wyl
(Ga,Al)as 0.00 0.00 0.00 0.00 0.00 0.00 ~0.07 0.02 0.02 0.03 0.11 0.0 I
(Ga,Al)Sb 0.02 0.03 0.02 0.02 0.02 0.03 ~0.15 0.02 0.02 0.03 0.0 A
(Ga,In)P 3.76 4.79 3.0. 3.29 3.39 5.24 2.54 4.56 3.63 2.94 3.25 éy'
3.5 AL
(Ga,In)As 2.97 3.76 2.36 2.61 2.69 4.14 1.60 2.49 2.81 2.42 1.25 1.65 ﬂ}
2.0 At
3.0 k.
(GayIn)Sb 2.22 2.83 1.77 1.95 2.00 3.09 0.81 2.53 1.85 1.83 1.47 :{:
1.9 oo
(In,Al)P 3.24 4,22 2.77 2.78 2.87 4.60 2.55 g
(In,Al)As 2.86 3.65 2.32 2.49 2.56 3.93 2.17 3.60 2.81 2.37 2.5 :}:
(In,Al)sb 1.81 2.33 1.49 1.57 1.61 2.50 1.36 2.06 1.46 1.45 0.6 Ly
(Cd,Zn)Te 1.80 2,43 1.73 1.43 1.49 2,45 1.24 2.12 1,97 1.63 1.34 -
(Hg,Cd)Te 0.00 0.00 0.00 0.00 0.00 0.00 -0.07 0.7 .
1.4 o
(Hg,Zn)Te 1.63 2.20 1.56 1.30 1.36 2.23 1.50 1.91 1.81 1.48 3.0 51:
Al(P,As) 0.81 1.03 0.65 0.71 0.73 1l.14 0.76 -
Ga(P,As) 0.95 1.18 0.70 0.86 0.87 1.32 0.94 1.15 0.98 0.66 0.12 0.4 N
1.0 JE
In(P,As) 0.60 0.78 0.52 0.51 0.53 0.8 0.57 0.72 0.58 0.52 0.4 5
Al(As,Sb) 4,31 5.45 3.38 3.80 3.88 5.92 4.09 ti:
Ga(As,Sb) 3.77 4.69 2.81 3.40 3.46 5.22 3.67 4.58 3.35 2.76 4.0 AN
' 4.5 -~
In(As,Sb) 2.61 3.39 2.23 2.24 2.31 3.67 2.52 2.89 2.29 2.17 6.65 2.25 ﬂ}
2.9 =
Al(P,Sb) 8.60 10.99 6.99 7.54 7.73 12,00 8.32 '
Ga(P,Sb) 8.54 10.61 6.36 7.72 7.88 11.66 8.66 y
In(P,SH) 5.87 7.64 5.08 4.99 5.15 8.04 5.76
Zn(S,Se) 1.04 1.39 0.98 0.85 0.90 1.49 0.90
Zn(S,Se) 1.06 1.39 0.98 0.85 0.90 1.49 0.90 o
Zn(Se,Te) 2.47 3.27 2.23 2.09 2.16 3.63 2.26 2.91 3.11 2.12 3.12 1.55 ke
Zn(S,Te) 7.02 9.34 6.45 5.80 6.02 9.72 6.20 s
a_ . ;ﬁ
Rei. 3, Col. A of Table IIT. o
PRres. 1¢ o
*’:
“Rez. 13 e
d ot
TRef. LT 2
“Ref. 15 and 19. '_‘\
Yo
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3 g
2 ( impurities and increase them for anion impurities. The corresponding E:f'
| changes in Q are the differences between the FPT and Model D2. We note that ,#
f the reductions of @ for the (Ga, In) alloys are very large (> 1 kcal/mole) :5&
. o
f: and also significant for (In, Al) alloys. However, the increases in Q for :E,
the anion substitutional alloys are not as large. Also the Q@ differences 'f 

.

N between Models D1 and D2 are less than 10 percent. Model A produces ;i‘
i values about 20 percent larger than Model D1; Model B in turn is 20 percent ;;
‘ higher than Model A; and Model E is 10 percent higher than Model B. The Q P:?
: values in the simple spring model, Model C, are seen to be about the same as Eig
Model D1, although the differences among systems can be positive or Ei:

negative. Although MZ used the same strain model as Model A, their Q values ;é;

do not agree with our Model A values because their way of estimating Q is

different. In fact, MZ's values are closer to Model B than A. Tt

To distinguish the quantitative nature of different theoretical models, =

.l ‘b

we note that there are also important factors that may mask the comparison

D)
.
2

between theory and experiment for Q. One important factor is that the >
! mixing enthalpies extracted from phase diagram analysis are sensitive to ii
1 sample and experimental conditions. These AHm contain contributions from Ek
N .

various nonideal structures such as vacancies, impurities, dislocations, !
X grain boundaries, and surface conditions, in addition to the ideal AHm

considered here for solid solutions. Thus, our theoretical AHm should

represent a lower bound. Another complication comes from the version of the '35

S

. theory of solid solution adopted. The theory used for analysis so far .
. -_\-:
. assumes a regular solid solution with second-neighbor pair interactions as o
. 20-22 23 N
was outlined in Section V. Recent experimental and theoretical N

L]
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o studies have suggested the possibility of compositional clustering or long- ( ! ,
. range correlations in alloys. Extending the theory to include such effects ‘*
: will alter the simple results for AHm from Eq.(41). Moreover, there is I':'_-:
§ evidence from the composition variation of the alloy hardnesszu and from the ,._,
s p o}
. optical phonon frequencies 25 that the shear coefficients of alloys increase ~‘
near the center of the composition range. This will cause the effective ;j'.
continuum shear coefficient C in Eq.(14) to be composition dependent, which \“
will cause @ to increase. Despite these uncertainties, useful comparisons -;'
across the board in Table 5 can still be made.
; :
' Based on the above considerations, we can conclude that Models B, E,
and MZ predict g values that are too high. We should emphasize that all the
2 numbers for models from A through MZ are directly calculated without any
adjustable parameters. The fact that Models A, C, and D1, D2, and the FPT (
4 agree with the experiment as well as or even slightly better than the one-
_‘: parameter t:heor'iesw'18 (DL and-FM) is already quite an accomplishment. The _
‘ few numbers taken from Van Vechtan's calculations”(VV) indicate that the -
" dielectric model predicts results at larger varience with experiments.
RS
There are two important implications about the FPT that can be drawn from
Table 3. First, the theory predicts a small but negative Q value for
several alloys. This not only means that there is no miscibility gap in
these alloys but also implies a tendency toward ordering, in which the *
substitutional atoms tend to be surrounded by different second-neighbor
: species. For stoichiometric compositions, this implies a tendency toward .':
compound formation. Secondly, the FPT tends to predict smaller Q values 'E-_
than observed experimentally, which should be expected according to our t"‘
; discussion. To the extent that the FPT predicts the correct AHm values for E‘ ;f..
2 37 ;;:_
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an ideal solution, the difference AHmex -AHm may be attributed to imperfect

AT e s T T R T )
.

conditions and deviations from the ideal solution theory.

Finally, the calculated @ values in Table 5 provide some guidance in

separating the completely miscible alloys from immiscible ones.26’27 In a

true random alloy, the criteria28 for alloy mixing at a temperature T is

that T ZTC, where the critical temperature Tc is given by n/(ZRg) with Rg

being the universal gas constant.29 For an AxB -xC alloy to be miscible

1

throughout the whole concentration range, the requirement is that both the

melting temperatures T1 and T, of the pure AC and BC compounds are greater

2
than Tc' Table 6 lists the values of Tc associated with the @ values in the

FPT, the ratios TC/T and Tc/TZ' and the average absolute values of 60 for

1
the alloys considered in Table 5. In Table 6, Tc is set equal to zero if @

is negative and T, is chosen to be the lower value of the two melting

2
temperatures, so the criterion for not having a miscibility gap is Tc/T2< 1.
26

There is an empirical rule stating that this will be satisfied if the

lattice mismatch |6°| between the two alloy components is less than 7.5
percent. However, we find that (see Appendix C) a more precise rule is that
|s°| < §,, where § = 1.63 x_and y, is the ratio of the rms bond length
amplitude fluctuation to the bond length at the ~elting temperature T
30

o° The

values of Tm for the compounds involved " and the associate Xp values
estimated from Eqs.(C2) and (C3) are tabulated in Table 1. The model used
in Appendix C yields T /T, = (co/sm)z. This suggests that it is instructive
to plot Tc/T2 as a function of |6°] /8, as is shown in Figure 4 for the
Tc calculated from FPT. This plot is similar to the AE vs 60 curve in Fig,.

2, because, in fact, Q9 is proportional to the sum of the AE values of the

two constituents [see Eq. (41)]. However, if T /T, is plotted against ldo[
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- Table 6. Comparison of the Critical Temperature T. of .
Mixing and Melting Temperatures of the Constituents T3 Kk
and T2, in the Order of Their Appearance in the '}
N Parentheses. Also Tabulated are the Averaged "
A Absolute Values of |§,| and the Ratio |6§,]|/8p R
- N
' System ol (B Te (°K)  To/Ty  Te/To Jool/ém K
- (Al,Ga)as 0.1 0 0 0 0.009 |
(Al,Ga)p 0.3 0 0 0 0.029 7
. (Al, Ga)Sb 0.6 0 0 0 0.067 :
] (AL, In)sb 5.5 342 0.25  0.42  0.679 !‘
- (Ga,In)Sb 5.8 204 0.21  0.25 0.716
- (A1, In)As 6.8 547 0.29  0.45 0.687
% (Ga,In)As 6.9 403 0.23 0.3  0.697 o
(A1,In)P 7.1 642 0.36  0.48 0.732 -
(Ga,In)P 7.4 639 0.43  0.48  0.763
In(P,As) 3.2 144 0.11  0.12  0.330 5
Al(As,P) 3.5 191 0.10  0.11  0.307 L
Ga(As,P) 3.7 236 0.14  0.15 0.352 (
5 In(4s,Sb) 6.8 635 0.52  0.79  0.840
L Ga(as, Sb) 7.6 924 0.53  0.94 ¢ 844 e
3 Al (As,Sb) 8.1 1030 0.56  0.78  0.810 o
y In(P,Sb) 9.9 1450 1.08  1.82 1.222 o~
. Ga(P,Sb) 11.3 2180 1.25 2,21 1.256 -
: A1(P,Sb) 11.6 2095 1.19  1.58 1.116 s
3 (Cd,Hg)Te 0.3 0 0 0 0.033 o
7-' (Zn,Hg)Te 6.0 377 0.25  0.40  0.659
(2n,Cd)Te 6.2 312 0.21  0.23  0.564
Zn(s, Se) 4.7 226 0.11  0.13  0.362 j
‘ zn(Se, Te) 7.2 569 0.32  0.38  0.615 N
: Zn(s,Te) 11.9 1560 0.74 1.03 1.017 B
N
R
? i
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Fig. 4. Plot of T /Ty as a function I(Sol/ém for T, obtained from

In (a),

(a) FPT, and (b) the experimental Q in Table 5.

the dots are for anion alloys and crosses for cation

The solid lines in both parts correspond

substitution.

The

to the simple theory discussed in Appendix C.

dashed lines at T./T; = 0O separate the miscible from

immiscible groups.
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alone, the FPT points are much more scattered, and those of SSHS would not ( '.\'
even exhibit a smooth simple quadratic form because the lower melting _E‘

:\: temperature 'I‘2 is not a smooth function of | é . This result suggests :i.:
\ that |6 [/6 < 1 is a better criterion than | & [< 0.075. :;’
. Figure 3 also clearly shows the chemical effects: all the cation- )
substitution alloy points lie below the solid curve and all the anion-

H substitution alloys have (Tc/T2) values on or above the curve, corresponding : X
to negative and positive shifts in AE due to the chemical terms. Again, the E
f‘-_ curve based the SSHS model is an excellent universal representation. From _.T
} the figure, we see that all (P,Sb) alloys should have miscibility gaps and
all (As, Sb) alloys are predicted to be miscible, although on the border-
line, because the actual mixing enthalpies are larger than these ideal ,.-j_::
calculated values. The figure also shows that Zn(S, Te) has a miscibility _
Z gap but a smaller value of Tc/Tz than the (P, Sb) alloys, despite the fact ( J
that its |6°|value is larger. All these predictions are consistent with the q‘
‘:f available experimental evidence; "
K., ne
i

e

VII. SUMMARY AND CONCLUSION g-
In this paper, a simple theory of defect substitution energies is
formulated. The substitution energy is compactly separated into a :

--_'. replacement energy AR and a distortion energy of the pure host crystal [see 'E
. =l
- Eq.(2)]. However, a rigorous application of this theory requires an C:'_:.'.
. g
r improvement in certain quantitative aspects of Harrison's bonding E{
% 41 <
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theor‘y,7 particularly the elastic constants.5 The most interesting

application of this theory presented in this paper is its perturbation form
which enables us to absorb the measured elastic coefficients into the
calculation, and more importantly, to study the chemical effects. The
origin of chemical influences on impurity bond relaxation can be attributed

to three mechanisms [see Eq.(17)]: a chemical force F h that either helps

c
or hinders lattice relaxation, depending on whether it has the same or
opposite sign from the bond length difference d-dI between the host and
impurity, a chemical energy that depends on the difference of the polarities

between the impurity and host bonds, AV and an effective elastic force

3!
constant H that, when positive, also tends to restrain the lattice from
distortion. To study the effect of boundaries between the core atoms around
an impurity and the rest of the elastic medium, various models based on the

valence force field10

are derived and their results are compared with the
full perturbation theory and available exerimental data. We found at least
five models, including the FPT,.that produce the correct impurity bond
lengths with variances for the compounds studied about equal to the

14,14 (~ 0.01 &). However, some modeis

experimental uncertainties in EXAFS
are oversimplified and will certainly not predict other properties equally
well. However, more experimental lattice constant measurements, to further
test the theory, particularly on (As, Sb) and (P,Sb) substitution systems
for which there are larger differences between different models, are needed,

It would also be instructive to see if the predicted reversal for HgCdTe is

found.

The excess energies of impurity substitution are also shown to provide

good estimates of the mixing enthalpies Q of pseudo-binary alloys. The

42
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; chemical shifts are found to have a negative net contribution to Q@ for most (j
cation substitutions, but positive contributions for anion substitutions.

The chemical reduction of Q@ in (Ga, In) alloys is larger than 1 kcal/mole

O -
AT

(30 percent to 100 percent). Several VFF models and the full perturbation
theory produce results for 9 that are as good as the best theories with one
adjustable parameter. However, the full theory tends to yield answers on
the low side of the experimental values, which we argue is as it should be,
because there are nonideal structures that also contribute to Q. The
calculated Q values and the melting temperatures are used to predict the
existance of alloy miscibility gaps, and the results correlate well with

experiments.

Finally, we wish to comment on the accuracy of the theories that are
connected to the present model. The perturbation theory has already been (:
stretched beyond its expected region of validity and predicts d1 to within

experimental uncertainties (~ 0.01 R) even for cases with large bond length

(OS  fiChi i
P A

differences (60 ~ 0.1). The accuracy can only be improved if the full non-
perturbation theory outlined in Section II is used. This calculation is

L needed for the strong substitution cases that were not considered in this
paper: examples are (B, Ga), (B, In), (N,P), (N,As), (N,Sb), (0,S), (0,Se)
" and (0,Te) substitutions. Although we believe that, for the properties
treated, the model with a continuum attached to the second-~shell is as
accurate as the perturbation theory used, it remains to be seen if this is
true for other properties, especially strain coefficients. Finally, the

present theory has been extended to study alloyss'6

by embedding clusters in
an effective medium. This enables us to study the bond length and energy

variations throughout the whole concentration range. However, a E:
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( quantitative calculation still awaits an improvement of the accuracy of e
Harrison's theory. A similar precedure is also being extended to a study of .

the alloy electronic structure, for which a cluster CPA (coherent-potential .
31
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will be

used. E—:

approximation) involving both potential and structural disorder

ACKNOWLEDGEMENT o)

TPV

4 ~

i This work benefited from useful discussions with Professors “rl
N

- W. A, Harrison and A. Zunger. A.-B Chen would like to thank Professor W. E\}

E. Spicer for his hospitality. The work is supported in part by AFOSR-84- i

-
0284 and DARPA Contract MDA 903-83-C-0108. g

- ror
DN
"nflf.‘,’v:."

v
o

3

3
Soat
Sl S T

P ok
8,0, Ay Ay Py
i LT

W

1 %
i

4 4 --"‘-"

et I N A BV L
Lo KON IPE I PaL Yo} P T e D v




Appendix A

ELASTIC ENERGY IN CONTINUUM

In Section 3, the elastic energy outside a sphere of radius R centered
at the impurity is assumed to be a continuum with a radial displacement
ﬁar/r% If the displacement at R is us then U (;) = u (Rz/rz)r. The

energy density in the continuum is given by

(e 2+e 2+e 2) + C . (e e +e e +e e )

->
ge(r) = C11 XX yy 2z 12" 7yy 22 XX yy XX 22z

[V B

2

1
* Ecuu(exy+eyz+ezx)’

where
ou
X 2 2_,.2y,.5
Cx = 5% R uo(r 3x°)/r”,
au Ju
- = e - 5
exy ™ + ™ 6R u xy/r , .
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Thus the total elastic energy in the continuum is

(out)

baia’ = Ip se(®) o

2. .6

22
= WnRu (5 Cyy75 Cy,*5Cy)

2
= CRuo ,

where the effective shear coefficient is given by

C = w(1.6C11-1.6C12+“.8Cuu).
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Appendix B

DISTORTION ENERGY

In this appendix, we count the detailed contributions of the bond
stretching terms A(Fi-Fi), and "bond bending" terms A (;1';j) for i=j in VFF

[Eq.(13)] that enter Eq.(16) in FPT and in the VFF Models in Section III.

a and g terms from the first-shell bonds

The four bond vectors pointing away from the central impurity according

to Fig. 1 are F1 = (1-6,1-6§,1-§)d/¥3. 32 = (1-§,-1-8,-1-6)d/¥YT ... Thus

A(F1-;1) - -26d° and A(F1-F2) = - §6d2. The a-terms contribute 4-3a,
(-2864%)%/84% - 6a162d2, and the g-terms contribute 6+38 (- % §d)2/8d2 =

BI62d2. If an A atom is replaced by a B atom, as was done in FPT, the ag

and BI are replaced by a and 8 respectively.

a-terms from the 2nd-shell bonds, 8-terms between the first- and

second-shell bonds and among the 2nd-shell bonds

For these terms we need to consider the four bond vectors pointing away
from C. They are F1 = (-1+8,-1+6,-1+8)d/V3, Fz = (=148, 1+8+Y, 1+§+Y) d/V/3,

F3 = (1+46+Y, -1+6, 1+Y+8)d/¥3, ... Then A (32-32) = % (6+2Y)d2,
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2 > 2.2 e

( A(F1-;2) = -—; (§+v)d"™, and A(r2-r'3) = §6d . Thus the a-terms from the e

second-shell bonds become 4e3-3a [%(6+2Y) d%12/8d2 = 2a (§+26)%d°, the 8- 55_

N

term between the first- and second~shell bonds are 4-.3-.38 [%(6+Y)d2]2/8d2= _':::::

.':.'

2(Y*6)28d2, and the g-terms among the second-shell bonds are 4.3.38 D

2

& sah?/8a” = 26%8d°. e

.o

o

:.,"-F

.
‘

m

a-terms for the third-shell bonds, 8-terms between the second- and e
third-shell bonds and among the third-shell bonds adjacent to the 7}_';:.

- ..'i’
second-shell atoms =

t'.-’.

-

R

For these terms we need to consider the bond vectors pointing away from [:

( B in Figure 1., They are ;2 = (1-§, -1-v-§,-1-Y-§)d/V3, F.I =
(1+y', 1+43v'-y, 1+3v'-Y)d//3, ?3 = (=1=y", 143y"-y, -1+Y"-Y)d/¥3 and ;u = ?ﬁ
' 2 Y

(=1-Y", =1+Y"-y, 143Y" -Y) d//J. Thus we have A (F,+ F)) = - i3’- (36+5Y"), oo
2 2 r‘n"_

> > d > > 2 2 +> > d
A(r,er,) = == (§+2Y-5Y"), Alr_«r,) = - = d°Y" er,) = == (-2Y-Y'+ 3y"), ”
(Pyerg) = 3= (8+2Y-5Y"), A(Fgery) = = 2 d7Y", A(F er ) = == (-2Y-Y'+ 3Y") e
> 9 d 2 L Y d 2 :':::
A(r_er_.) == (6Y"), and A(r,«r.) = =— (14y'-4y), For Model A, Y' = r" = iy
3°3 3 11 3 &\

O, s0 the a terms of the third shell bonds become 4.3-3a [2(A;3-l-:3)2 + ﬁ,_;
2 2 2002 2.2 .
(Ar,l-r']) 1784 = 8ay~d, the B terms between the 2nd- and 3rd-shell bonds are
4.3.380Ca 7, o702 + 208 Ao )21/80° = 2 gdPr6%42 (se2v)?] <2
1772 27 3 2 9 2 =

2.2 2.2 . oo
BS"d +R(8+2Y)"d", and the B terms among the third-shell bonds adjacent to }t.
o~

the second-shell atoms are 4.3.3 3[2(A?‘1-33)2/(8d2)+(AF3-;u)2]=MeY2d2. For f:i
A

A

continuumm and the only contribution from this group are the B terms between B
c.".~

L the second- and third-shell bonds. Since the displacements in the continuum :-.:',::
.-';:
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are proportional to 1/R2,Y' = 8/2 v/(19/79) and Y" = 8/2Y/(11/11). Thus, ( E

P g
N these g terms become ::?_
3 o
\ oY
y y - ~

9 ..d 1y2,2d eemy2y _ 1 4ovZ 2 oh

: a2 8[9 (35+5Y") 5 (6+2y-5Y")"] = 3 8[(35*'1—97TgY) o
N P
- s
S -
;.

_bov? 24,2, e
+2(8+2Y WTTY) 1d _.:-

- s
. I
B terms for bonds adjacent to the third-shell atoms ‘.-'..j

. £
: These terms only enter Model A, so r' = r" = 0, There are two :.

. different groups, one like those adjacent to C' and another like those (

:: meeting at C". The four bond vectors pointing away from C' are F1= ::::::
: (=1, =157, =1+Y) a//3, F, = (-1,1,1) @//3, F5 = (1,-1,1) &/V/3, and 7 = ]
(1,1,-1) d//3. Thus the only contribution from this group is 4:3.38

. [A(;-;Z)]z/de = 2BY2d2. The four bond vectors around C" are: ;1 ::_i:.-
= (-1+Y’ -1-Y' -1)d//3-' ;2 = (-19111)(1//?’ r‘3 = (19-14‘Y; 1+Y)d//§’ and ;u = éj

(1,1,-1)d//3, which only results in the first order term A(FZoF3)
= -§- Yd2. Thus the group contributes to 4.3.3g[2 (AFZ-F3)2]/8d2 = ugyzdz, '.:j'; ~_'
and the combined contribution from these two groups is 68Y2d2.
o
: RN
n, :-:‘.
L] '\
¥
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Appendix C

Starting with Eq.(24) and using the SSHS model a = ap, one finds the

mixing enthalpy parameter Q to be

3, .2
Q = 2 G(dAC dBC) Nol

' o =
where N° is Avagadro's number and a = (1/2) (“AC+°BC
2

square bond length fluctuation <z > at the melting temperature Tm to Tmfor a

). Then relate the mean

compound by equating the average potential energy per unit cell to half of

the thermal energy:

2

= 4.3 - 1.
<P.E.> = 4 Sa<g™> = 2(2 3kTm)

where k is the Boltzmann constent. Defining a Liedermann ratio of melting

X, by

m
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and choosing the mixing criterion to be TC/Tm < 1, where Tm now is the (T
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smaller value of the two melting temperatures of the constituent compounds,
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